Patents by Inventor Wolfgang Drahm

Wolfgang Drahm has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180149571
    Abstract: The viscometer provides a viscosity value (X0) which represents the viscosity of a fluid flowing in a pipe connected thereto. It comprises a vibratory transducer with at least one flow tube for conducting the fluid, which communicates with the pipe. Driven by an excitation assembly, the flow tube is vibrated so that friction forces are produced in the fluid. The viscometer further includes meter electronics which feed an excitation current (iexc) into the excitation assembly. By means of the meter electronics, a first internal intermediate value (X1) is formed, which corresponds with the excitation current (iexc) and thus represents the friction forces acting in the fluid. According to the invention, a second internal intermediate value (X2), representing inhomogeneities in the fluid, is generated in the meter electronics, which then determine the viscosity value (X0) using the two intermediate values (X1, X2).
    Type: Application
    Filed: January 26, 2018
    Publication date: May 31, 2018
    Inventors: Wolfgang DRAHM, Alfred RIEDER
  • Publication number: 20180075832
    Abstract: An arrangement, comprising a housing wall, an ultrasonic transducer and a damping element with a longitudinal axis, which damping element connects the ultrasonic transducer with the housing wall. The ultrasonic transducer has an end piece with a medium-contacting surface, from which ultrasonic signals are transferred into a gaseous or liquid medium. The damping element is provided for body sound damping between the ultrasonic transducer and the housing wall, and wherein the damping element has at least one, especially a number of, oscillatory nodes, characterized in that there is arranged between the damping element and the housing wall at least a first sealing ring, which is positioned at a height of an oscillatory node.
    Type: Application
    Filed: March 24, 2016
    Publication date: March 15, 2018
    Inventors: Yaoying Lin, Alfred Rieder, Wolfgang Drahm, Michal Bezdek, Pierre Ueberschlag
  • Publication number: 20180058893
    Abstract: A measuring system comprises: a measuring transducer; transmitter electronics; at least one measuring tube; and at least one oscillation exciter. The transmitter electronics delivers a driver signal for the at least one oscillation exciter, and for feeding electrical, excitation power into the at least one oscillation exciter. The driver signal, has a sinusoidal signal component which corresponds to an instantaneous eigenfrequency, and in which the at least one measuring tube can execute, or executes, eigenoscillations about a resting position. The eigenoscillations have an oscillation node and in the region of the wanted, oscillatory length exactly one oscillatory antinode. The driver signal has, a sinusoidal signal component with a signal frequency, which deviates from each instantaneous eigenfrequency of each natural mode of oscillation of the at least one measuring tube, in each case, by more than 1 Hz and/or by more than 1% of said eigenfrequency.
    Type: Application
    Filed: October 26, 2017
    Publication date: March 1, 2018
    Inventors: Wolfgang DRAHM, Hao ZHU, Alfred RIEDER, Michael WIESMANN, Patrick OUDOIRE
  • Publication number: 20180061390
    Abstract: An arrangement comprising an ultrasonic transducer and a damping element with a longitudinal axis, which damping element connects the ultrasonic transducer with a housing- or measuring tube wall. The transducer has an end piece with a medium-contacting surface, from which ultrasonic signals are transferred into a gaseous or liquid medium. The damping element has at least two annular grooves and an annular mass segment arranged therebetween, characterized in that the damping element has a first eigenfrequency, in which the annular mass segment executes an axial movement parallel to the longitudinal direction of the damping element. This first eigenfrequency is the highest eigenfrequency, in the case that a plurality of eigenfrequencies are present, in the case of which the annular mass segment executes an axial movement parallel to the longitudinal direction of the damping element, and the damping element has a second eigenfrequency, in which the annular mass segment executes a rotary movement.
    Type: Application
    Filed: February 15, 2016
    Publication date: March 1, 2018
    Inventors: Yaoying LIN, Alfred RIEDER, Wolfgang DRAHM, Michal BEZDEK, Pierre UEBERSCHLAG
  • Publication number: 20180045545
    Abstract: A magneto-inductive flow measuring device for measuring the flow of a flowable medium is described. The flow measuring device includes a measuring tube, a pair of coils, which are arranged opposite one another on the measuring tube and which are designed to produce an alternating magnetic field, which can be turned on and off, and which extends essentially transversely to the longitudinal axis of the measuring tube, as well as a pair of permanent magnets, which are arranged opposite one another on the measuring tube and which are designed to produce a permanent magnetic field, which extends essentially transversely to the longitudinal axis of the measuring tube.
    Type: Application
    Filed: February 15, 2016
    Publication date: February 15, 2018
    Inventors: Nikolai Fink, Frank Schmalzried, Wolfgang Drahm
  • Publication number: 20170261474
    Abstract: A measuring transducer comprises two flow dividers having, in each case, two tubular chambers separated from one another and adapted for guiding in- and out flowing fluid, of which each has a chamber floor, in which are formed, in each case, two mutually spaced flow openings communicating with a lumen of the chamber, and as well as a tube arrangement having at least four measuring tubes connected to the flow dividers for guiding flowing fluid with parallel flow. Moreover, the measuring transducer comprises an electromechanical exciter mechanism for exciting mechanical oscillations of the measuring tubes as well as a sensor arrangement for registering oscillatory movements of the measuring tubes and for generating at least two oscillation measurement signals representing oscillations of at least one of the measuring tubes.
    Type: Application
    Filed: November 3, 2015
    Publication date: September 14, 2017
    Inventors: Hao Zhu, Alfred Rieder, Wolfgang Drahm, Michael Kirst
  • Publication number: 20160216189
    Abstract: The viscometer provides a viscosity value (X?) which represents the viscosity of a fluid flowing in a pipe connected thereto. It comprises a vibratory transducer with at least one flow tube for conducting the fluid, which communicates with the pipe. Driven by an excitation assembly, the flow tube is vibrated so that friction forces are produced in the fluid. The viscometer further includes meter electronics which feed an excitation current (iexc) into the excitation assembly. By means of the meter electronics, a first internal intermediate value (X1) is formed, which corresponds with the excitation current (iexc) and thus represents the friction forces acting in the fluid. According to the invention, a second internal intermediate value (X2), representing inhomogeneities in the fluid, is generated in the meter electronics, which then determine the viscosity value (X?) using the two intermediate values (X1, X2).
    Type: Application
    Filed: April 1, 2016
    Publication date: July 28, 2016
    Inventors: Wolfgang DRAHM, Alfred RIEDER
  • Patent number: 9322691
    Abstract: The viscometer provides a viscosity value (X?) which represents the viscosity of a fluid flowing in a pipe connected thereto. It comprises a vibratory transducer with at least one flow tube for conducting the fluid, which communicates with the pipe. Driven by an excitation assembly, the flow tube is vibrated so that friction forces are produced in the fluid. The viscometer further includes meter electronics which feed an excitation current (iexc) into the excitation assembly. By means of the meter electronics, a first internal intermediate value (X1) is formed, which corresponds with the excitation current (iexc) and thus represents the friction forces acting in the fluid. According to the invention, a second internal intermediate value (X2), representing inhomogeneities in the fluid, is generated in the meter electronics, which then determine the viscosity value (X?) using the two intermediate values (X1, X2).
    Type: Grant
    Filed: October 23, 2014
    Date of Patent: April 26, 2016
    Assignee: ENDRESS + HAUSER FLOWTEC AG
    Inventors: Wolfgang Drahm, Alfred Rieder
  • Patent number: 9170240
    Abstract: An ultrasonic particle measuring system having an ultrasonic transducer with at least one ultrasonic transducer element and at least one coupling element, wherein, during operation, acoustic signals are transmittable and receivable by the ultrasonic transducer element via the coupling element, wherein the coupling element is embodied as an acoustic lens, and the ultrasonic, particle measuring system has an evaluation unit suitable for amplitude analysis of reflection signals of acoustic signals reflected from particles to the ultrasonic transducer, and wherein, with the evaluation unit, amplitudes of reflection signals in a predetermined time interval are countable, which are greater than a predetermined threshold value.
    Type: Grant
    Filed: June 20, 2011
    Date of Patent: October 27, 2015
    Assignee: ENDRESS + HAUSER FLOWTEC AG
    Inventors: Yaoying Lin, Beat Kissling, Wolfgang Drahm, Thomas Frohlich
  • Patent number: 9134165
    Abstract: A method for detecting accretion or abrasion on a first measuring tube of a flow measuring device. A first temperature as a function of time is registered via a first temperature sensor, which is arranged on the first measuring tube in such a manner that, between the first temperature sensor and the medium, at least one measuring tube wall of the first measuring tube is embodied. Parallel in time, a second reference temperature as a function of time is registered by a second temperature sensor, which is spaced from the first temperature sensor and thermally coupled to the medium. Therefrom, at least one variable characteristic is determined, and accretion or abrasion on the first measuring tube is detected, if the at least one determined characteristic variable or a variable derived therefrom deviates by more than a limit value from a predetermined reference variable.
    Type: Grant
    Filed: August 2, 2012
    Date of Patent: September 15, 2015
    Assignee: Endress + Hauser Flowtec AG
    Inventors: Michael Kirst, Alfred Rieder, Wolfgang Drahm, Hao Zhu, Christof Huber, Vivek Kumar
  • Patent number: 9109936
    Abstract: A measuring device electronics comprises a processor and two clock signal generators. One clock signal generator serves for producing a working clock signal, and also for producing a reference clock signal which is dependant on the working clock signal. The other clock signal generator, serves for producing a second reference clock signal, which is independent of the working clock signal. Based on the two independent reference clock signals, a frequency difference, can, to the extent that such is present, be ascertained during operation of the measuring device electronics or of the measuring device formed therewith. The frequency difference, represents a difference between the instantaneous clocking frequency of the first reference clock signal and the instantaneous clocking frequency of the second reference clock signal, and, in this respect, represents a measure for a deviation of an instantaneous clocking frequency, from the nominally predetermined clocking frequency, of the working clock signal.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: August 18, 2015
    Assignee: ENDRESS + HAUSER FLOWTEC AG
    Inventors: Wolfgang Drahm, Gernot Engstler, Hans Pohl, Christian Matt, Robert Lalla, Matthias Brudermann
  • Patent number: 9052221
    Abstract: A method and flow measuring device for ascertaining flow of a medium through a measuring tube based on at least a first measurement signal, which depends at least on the flow velocity of the medium in the measuring tube, wherein the first measurement signal is registered, wherein an additional, second measurement signal is registered, which depends on the flow cross sectional area of the medium in the measuring tube and is independent of the flow velocity of the medium in the measuring tube, and wherein flow is ascertained as a function of the first and second measurement signals.
    Type: Grant
    Filed: April 14, 2011
    Date of Patent: June 9, 2015
    Assignee: ENDRESS + HAUSER FLOWTEC AG
    Inventors: Wolfgang Drahm, Alfred Rieder, Stefan Heidenblut, Frank Schmalzried, Thomas Sulzer
  • Publication number: 20150040647
    Abstract: The viscometer provides a viscosity value (X?) which represents the viscosity of a fluid flowing in a pipe connected thereto. It comprises a vibratory transducer with at least one flow tube for conducting the fluid, which communicates with the pipe. Driven by an excitation assembly, the flow tube is vibrated so that friction forces are produced in the fluid. The viscometer further includes meter electronics which feed an excitation current (iexc) into the excitation assembly. By means of the meter electronics, a first internal intermediate value (X1) is formed, which corresponds with the excitation current (iexc) and thus represents the friction forces acting in the fluid. According to the invention, a second internal intermediate value (X2), representing inhomogeneities in the fluid, is generated in the meter electronics, which then determine the viscosity value (X?) using the two intermediate values (X1, X2).
    Type: Application
    Filed: October 23, 2014
    Publication date: February 12, 2015
    Inventors: Wolfgang DRAHM, Alfred RIEDER
  • Patent number: 8887555
    Abstract: The viscometer provides a viscosity value (X?) which represents the viscosity of a fluid flowing in a pipe connected thereto. It comprises a vibratory transducer with at least one flow tube for conducting the fluid, which communicates with the pipe. Driven by an excitation assembly, the flow tube is vibrated so that friction forces are produced in the fluid. The viscometer further includes meter electronics which feed an excitation current (iexc) into the excitation assembly. By means of the meter electronics, a first internal intermediate value (X1) is formed, which corresponds with the excitation current (iexc) and thus represents the friction forces acting in the fluid. According to the invention, a second internal intermediate value (X2), representing inhomogeneities in the fluid, is generated in the meter electronics, which then determine the viscosity value (X?) using the two intermediate values (X1, X2).
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: November 18, 2014
    Assignee: Endress + Hauser Flowtec AG
    Inventors: Alfred Rieder, Wolfgang Drahm
  • Patent number: 8881604
    Abstract: A measuring system comprises: a measuring transducer of vibration type, through which fluid flows during operation, and which produces oscillation signals corresponding to parameters of the flowing fluid; as well as a transmitter electronics (TE), which is electrically coupled with the measuring transducer, and serves for activating the measuring transducer and for evaluating oscillation signals delivered by the measuring transducer. The measuring transducer (MT) includes: At least one measuring tube (10; 10?) for conveying flowing fluid; at least one electro-mechanical oscillation exciter (41) for actively exciting and/or maintaining bending oscillations of the at least one measuring tube in a wanted mode; and at least a first oscillation sensor (51) for registering vibrations of the at least one measuring tube, and for producing an oscillation signal (s1) of the measuring transducer, representing vibrations at least of the at least one measuring tube.
    Type: Grant
    Filed: August 19, 2011
    Date of Patent: November 11, 2014
    Assignee: Endress + Hauser Flowtec AG
    Inventors: Hao Zhu, Wolfgang Drahm, Alfred Rieder, Vivek Kumar
  • Patent number: 8857270
    Abstract: A method for detecting plugging of a measuring tube. Heat is supplied to a medium conveyed in a first measuring tube by means of at least one heating element, or heat is removed from the medium conveyed in a first measuring tube by means of at least one cooling element. At least one temperature sensor, which is thermally coupled to the medium conveyed in the first measuring tube, temperature is registered. Additionally, a first comparison variable, which is characteristic for heat transport by the medium in the first measuring tube, is determined based on the supplying of heat or removing of heat, as well as on the temperature registering, and this comparison variable is compared with a reference variable. Plugging of at least one measuring tube of the measuring transducer is detected if the first comparison variable deviates from the reference variable by more than a limit value.
    Type: Grant
    Filed: September 8, 2011
    Date of Patent: October 14, 2014
    Assignee: Endress + Hauser Flowtec AG
    Inventors: Hao Zhu, Wolfgang Drahm, Alfred Rieder
  • Patent number: 8826744
    Abstract: A measuring transducer comprises a housing, and a tube arrangement formed by means of at least two tubes extending within the housing. At least one tube is embodied as a measuring tube serving for conveying flowing medium and another tube is mechanically connected with the tube by means of a coupling element to form an inlet-side coupling zone and by means of a coupling element. The coupling element is arranged equally far removed from the housing end. One coupling element has, about an imaginary longitudinal axis of the tube arrangement imaginarily connecting a center of mass of the coupling element and a center of mass of the other coupling element, with an angle of intersection equal to that with the other coupling element, a bending stiffness, which deviates from a bending stiffness of the other coupling element about said imaginary longitudinal axis of the tube arrangement.
    Type: Grant
    Filed: March 29, 2012
    Date of Patent: September 9, 2014
    Assignee: Endress + Hauser Flowtec AG
    Inventors: Alfred Rieder, Wolfgang Drahm, Michael Wiesmann, Christof Huber, Martin Anklin
  • Patent number: 8819656
    Abstract: An installed hardware of a measuring field device includes at least one transducer reacting during operation to a chemical and/or physical, measured variable of a pourable and/or flowable medium, especially a pourable or flowable bulk good, liquid, gas or the like, as well as a microcomputer communicating during operation with the transducer. The field device is first installed by means of the transducer on, and/or in a process vessel serving for conveying and/or holding pourable and/or flowable media for forming a process measuring point. Thereafter, the microcomputer is booted and a basic software held in a memory provided within the field device for providing, at least in part, basic functionalities of the field device is activated in such a manner that the basic software is executable by means of the microcomputer so that, in the interaction of basic software and hardware installed in the field device, the basic functionalities of the field device are available.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: August 26, 2014
    Assignee: Endress + Hauser (Deutschland) AG + Co. KG
    Inventors: Thomas Budmiger, Michael Kirst, Wolfgang Drahm, Simon Stingelin
  • Publication number: 20140144246
    Abstract: A method and flow measuring device for ascertaining flow of a medium through a measuring tube based on at least a first measurement signal, which depends at least on the flow velocity of the medium in the measuring tube, wherein the first measurement signal is registered, wherein an additional, second measurement signal is registered, which depends on the flow cross sectional area of the medium in the measuring tube and is independent of the flow velocity of the medium in the measuring tube, and wherein flow is ascertained as a function of the first and second measurement signals.
    Type: Application
    Filed: April 14, 2011
    Publication date: May 29, 2014
    Applicant: Endress + Hauser Flowtec AG
    Inventors: Wolfgang Drahm, Alfred Rieder, Stefan Heidenblut, Frank Schmalzried, Thomas Sulzer
  • Patent number: 8738305
    Abstract: A method for detecting blockage of a measuring tube of a Coriolis flow measuring device, which has at least two measuring tubes. For this, the at least two measuring tubes are excited by at least one exciter to execute mechanical oscillations, mechanical oscillations of the measuring tubes are registered by at least one sensor and at least one measurement signal representing the mechanical oscillations is produced. At least one produced measurement signal is analyzed for the occurrence of a deviation of a resonance frequency of one measuring tube relative to a resonance frequency of the at least one other measuring tube. In case such a deviation occurs, blockage of a measuring tube is established.
    Type: Grant
    Filed: May 5, 2010
    Date of Patent: May 27, 2014
    Assignee: Endress + Hauser Flowtec AG
    Inventors: Alfred Rieder, Wolfgang Drahm, Hao Zhu, Marcel Braun