Patents by Inventor Wolfgang Hämmerle

Wolfgang Hämmerle has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11866360
    Abstract: A method for producing a preform for producing a multi-core fiber. The method includes removing a first part-tube segment having a first part-tube segment cross-sectional area from a center of a receiving tube having a receiving tube internal diameter so that the receiving tube has a first core rod receiving cut-out, axially introducing a central filling rod having a filling rod external diameter into the receiving tube so that the receiving tube contains the central filling rod, inserting a first core rod having a first core rod cross-sectional area into the core rod receiving cut-out so that the receiving tube contains the core rod, axially introducing the receiving tube containing the first core rod and the central filling rod into a jacketing tube so as to obtain a jacketing tube containing the receiving tube, and fusing the jacketing tube containing the receiving tube to form the preform.
    Type: Grant
    Filed: May 15, 2019
    Date of Patent: January 9, 2024
    Assignee: J-FIBER GMBH
    Inventors: Wolfgang Haemmerle, Christian Schulze
  • Publication number: 20230416139
    Abstract: A preform manufactured by a method which includes removing a part-tube segment from a center of a receiving tube so that the receiving tube has a core rod receiving cut-out which is formed as a remaining annular sector with two opposite edges, axially introducing a central filling rod into the receiving tube so that the receiving tube contains the central filling rod, inserting a core rod in a radial direction from outside into the core rod receiving cut-out between the two opposite edges of the remaining annular sector so that the receiving tube contains the first core rod, axially introducing the receiving tube containing the core rod and the central filling rod into a jacketing tube so as to obtain a jacketing tube containing the receiving tube, and fusing the jacketing tube containing the receiving tube to form the preform.
    Type: Application
    Filed: September 7, 2023
    Publication date: December 28, 2023
    Applicant: J-FIBER GMBH
    Inventors: WOLFGANG HAEMMERLE, CHRISTIAN SCHULZE
  • Patent number: 11702358
    Abstract: The invention relates to a method and a device for producing a preform for glass fiber production. The method comprises the steps of providing a carrier gas with a desired, precisely adjusted temperature, loading the carrier gas with halide vapor, mixing the loaded carrier gas with additional gases, and producing the preform in a reaction chamber with substrate.
    Type: Grant
    Filed: July 30, 2019
    Date of Patent: July 18, 2023
    Assignee: J-FIBER GMBH
    Inventor: Wolfgang Haemmerle
  • Publication number: 20220227657
    Abstract: A method of manufacturing a quartz glass fibre includes producing a quartz glass primary preform by modified chemical vapor deposition (MCVD) in a quartz glass substrate tube and inserting the quartz glass primary preform into a glass jacketing tube. Defect-generating UV radiation is irridiated into the cross-sectional area of the glass jacketing tube while combining the quartz glass primary preform with the glass jacketing tube in the jacketing process to form a cladding layer to a secondary preform. A quartz glass fibre is pulled from the secondary preform.
    Type: Application
    Filed: June 8, 2020
    Publication date: July 21, 2022
    Inventor: WOLFGANG HAEMMERLE
  • Patent number: 11242276
    Abstract: The invention relates to a method for producing a glass-fibre preform with a core of a polygonal cross section by using a rod-in-tube method and comprising the method steps of: providing a core rod (1) of a polygonal core rod cross section (2), producing a sectored sandwich tube (3) from a starting tube (4), wherein the lateral surface of the starting tube (4) is slit in the longitudinal direction into a series of outer segments (8), and so the tube cross section of the starting tube (4) is subdivided into a series of sectors of a circle (7), inserting the core rod (1) into the sectored sandwich tube (3) and aligning it and, in the case of one embodiment, inserting the core rod (1) and the sectored sandwich tube (3) into an outer casing tube (10) with a complete annular cross section and melting the sectored sandwich tube (3) and possibly the outer casing tube (10) onto the sectored sandwich tube (3), wherein the outer segments (8) of the sectored sandwich tube (3) are fused to the respective side surfaces (9
    Type: Grant
    Filed: August 24, 2018
    Date of Patent: February 8, 2022
    Assignee: LEONI KABEL GMBH
    Inventors: Wolfgang Hämmerle, Jörg Kötzing
  • Publication number: 20210309558
    Abstract: The invention relates to a method and a device for producing a preform for glass fiber production. The method comprises the steps of providing a carrier gas with a desired, precisely adjusted temperature, loading the carrier gas with halide vapor, mixing the loaded carrier gas with additional gases, and producing the preform in a reaction chamber with substrate.
    Type: Application
    Filed: July 30, 2019
    Publication date: October 7, 2021
    Inventor: Wolfgang HAEMMERLE
  • Publication number: 20210198139
    Abstract: A method for producing a preform for producing a multi-core fiber. The method includes removing a first part-tube segment having a first part-tube segment cross-sectional area from a center of a receiving tube having a receiving tube internal diameter so that the receiving tube has a first core rod receiving cut-out, axially introducing a central filling rod having a filling rod external diameter into the receiving tube so that the receiving tube contains the central filling rod, inserting a first core rod having a first core rod cross-sectional area into the core rod receiving cut-out so that the receiving tube contains the core rod, axially introducing the receiving tube containing the first core rod and the central filling rod into a jacketing tube so as to obtain a jacketing tube containing the receiving tube, and fusing the jacketing tube containing the receiving tube to form the preform.
    Type: Application
    Filed: May 15, 2019
    Publication date: July 1, 2021
    Applicant: LEONI KABEL GMBH
    Inventors: WOLFGANG HAEMMERLE, CHRISTIAN SCHULZE
  • Publication number: 20210039979
    Abstract: A device for aligning an impact of a tubular preform of an optical waveguide. The device incudes a turning device which rotates the preform about an axis of rotation, a reactive gas supply which supplies a reactive gas to an inside of the preform, a burner device which is movably associated with the preform in a longitudinal direction along the axis of rotation of the preform and which control a temperature of an outer surface of the preform via a coating flame so that the reactive gas is partially deposited from the inside on an inner wall of the preform and melted to form a transparent layer, and an impact correction device having a compressed air device which applies compressed air. The impact correction device is arranged at a first longitudinal distance along the longitudinal direction from the coating flame so that the preform is aligned via the compressed air.
    Type: Application
    Filed: February 26, 2019
    Publication date: February 11, 2021
    Applicant: LEONI KABEL GMBH
    Inventors: CHRISTIAN SCHULZE, WOLFGANG HAEMMERLE
  • Publication number: 20200180995
    Abstract: The invention relates to a method for producing a glass-fibre preform with a core of a polygonal cross section by using a rod-in-tube method and comprising the method steps of: providing a core rod (1) of a polygonal core rod cross section (2), producing a sectored sandwich tube (3) from a starting tube (4), wherein the lateral surface of the starting tube (4) is slit in the longitudinal direction into a series of outer segments (8), and so the tube cross section of the starting tube (4) is subdivided into a series of sectors of a circle (7), inserting the core rod (1) into the sectored sandwich tube (3) and aligning it and, in the case of one embodiment, inserting the core rod (1) and the sectored sandwich tube (3) into an outer casing tube (10) with a complete annular cross section and melting the sectored sandwich tube (3) and possibly the outer casing tube (10) onto the sectored sandwich tube (3), wherein the outer segments (8) of the sectored sandwich tube (3) are fused to the respective side surfaces (9
    Type: Application
    Filed: August 24, 2018
    Publication date: June 11, 2020
    Inventors: Wolfgang Hämmerle, Jörg Kötzing
  • Patent number: 9720264
    Abstract: The invention relates to a method for producing a polarization-maintaining optical fiber, consisting of a core region and stress-generating elements embedded in the fiber body, having the following method steps: producing a core preform for the core region using internal deposition on a substrate tube, the internally coated substrate tube subsequently being collapsed, generating recesses on the core preform by virtue of the material on the outer surface of the core preform being removed parallel to the longitudinal axis of the core preform at diametrically opposed positions, filling the recesses with stress-generating rods, with the tightest possible rod packing, in a freely selectable first filling geometry, possibly filling the recesses in addition with non-stress-generating rods in a second filling geometry, sheathing the filled core preform with a jacketing tube, preparing the sheathed core preform for a fiber-drawing process, and drawing the sheathed arrangement to form the optical fiber.
    Type: Grant
    Filed: May 6, 2015
    Date of Patent: August 1, 2017
    Assignee: J-FIBER GMBH
    Inventors: Thomas Gutsche, Wolfgang Hämmerle, Robert Hanf, Lothar Brehm
  • Publication number: 20170075147
    Abstract: The invention relates to a method for producing a polarization-maintaining optical fibre, consisting of a core region and stress-generating elements embedded in the fibre body, having the following method steps: producing a core preform for the core region using internal deposition on a substrate tube, the internally coated substrate tube subsequently being collapsed, generating recesses on the core preform by virtue of the material on the outer surface of the core preform being removed parallel to the longitudinal axis of the core preform at diametrically opposed positions, filling the recesses with stress-generating rods, with the tightest possible rod packing, in a freely selectable first filling geometry, possibly filling the recesses in addition with non-stress-generating rods in a second filling geometry, sheathing the filled core preform with a jacketing tube, preparing the sheathed core preform for a fibre-drawing process, and drawing the sheathed arrangement to form in the optical fibre.
    Type: Application
    Filed: May 6, 2015
    Publication date: March 16, 2017
    Inventors: Thomas Gutsche, Wolfgang Hämmerle, Robert Hanf, Lothar Brehm
  • Patent number: 9255026
    Abstract: Methods for making active laser fibers include the production of an optical fiber with disturbed (or deviated) cylindrical symmetry on the glass surface of the fiber. The methods include a preform containing a central core made of glass. In one embodiment, the preform is circular and surrounded by additional glass rods and an outer glass jacket tube. In a first alternative embodiment, this preform is merged during fiber drawing. In a second alternative embodiment, the preform merged in a process forming a compact glass body with disturbed cylindrical symmetry. This compact preform is drawn into a fiber under conditions maintaining the disturbed cylindrical symmetry.
    Type: Grant
    Filed: March 6, 2013
    Date of Patent: February 9, 2016
    Assignee: j-fiber, GmbH
    Inventors: Jurgen Rosenkranz, Wolfgang Haemmerle, Lothar Brehm, Katrin Roessner, Robert Hanf
  • Patent number: 9249046
    Abstract: Methods for making a preform for a graded-index multimode fiber by using an inside deposition process are disclosed. The methods are characterized by an iterative refractive index profile correction with the following steps: determining a target refractive index profile for the preform to be produced, carrying out an inside deposition process with fixed volume flows for the reacting gases inside a tube and a given burner speed for all deposited layers, collapsing the tube and measuring the actual refractive index profile, comparing the target profile with the actual profile and calculating a correction value of index differences, converting this correction value in corrected burner speeds as varying process parameter, carrying out a inside deposition process with fixed gas flows and corrected burner speeds for all layers to be deposited.
    Type: Grant
    Filed: July 18, 2013
    Date of Patent: February 2, 2016
    Assignee: j-fiber, GmbH
    Inventors: Christian Genz, Wolfgang Haemmerle, Lothar Brehm
  • Patent number: 9164229
    Abstract: The invention relates to a bend insensitive gradient index multi-mode light conducting fiber comprising a leakage mode dependent optical core diameter that is uniform over its length and a numerical aperture that is uniform over its length, wherein for a light wavelength of 850 nm and an overfilled launch (OFL), the optical core diameter for a fiber length in a range between 2 m and 100 m decreases by less than 5% and the numerical aperture decreases by less than 2.5% and the curvature related attenuation increase for two turns and a curvature radius of 7.5 mm is less than 0.2 db.
    Type: Grant
    Filed: July 23, 2014
    Date of Patent: October 20, 2015
    Assignee: J-FIBER GMBH
    Inventors: Wolfgang Hämmerle, Christian Genz, Lothar Brehm, Falk Wirth
  • Publication number: 20140334787
    Abstract: The invention relates to a bend insensitive gradient index multi-mode light conducting fiber comprising a leakage mode dependent optical core diameter that is uniform over its length and a numerical aperture that is uniform over its length, a core (1), an inner cladding (2), a refraction index trench (3) and an outer cladding (4), wherein the core (1) includes a core radius R1, an alpha-refraction index profile and a core refraction index difference dn1 with respect to the outer cladding (4), wherein the refraction index trench (3) includes a refraction index trench radius R3 and a trench refraction index difference dn3 with respect to the outer cladding (4), wherein the outer cladding (4) includes an outer cladding radius R4 and a refraction index between 1.40 and 1.55, wherein for a light wavelength of 850 nm and a full core excitation (OFL), the optical core diameter for a fiber length in a range between 2 m and 300 m decreases by less than 5% and the numeric aperture decreases by less than 2.
    Type: Application
    Filed: July 23, 2014
    Publication date: November 13, 2014
    Inventors: Wolfgang HÄMMERLE, Harald HEIN, Christian GENZ, Lothar BREHM, Falk WIRTH
  • Patent number: 8879879
    Abstract: The invention relates to an optical fiber, in particular a laser fiber, containing a doped glass fiber core (1) and cladding (2) around the latter with a refraction index profile which decreases outwards from the fiber core. The optical fiber is distinguished by at least one intermediate layer (3, 4, 5) being disposed between the glass fiber core and the cladding to reduce the mechanical tension therebetween. In one advantageous embodiment, the intermediate layer is doped in such a way as to ensure a stepped mechanical tension distribution between the glass fiber core and the cladding, and is co-doped in such a way as to reduce the refractive index and counteract the refraction index-increasing effect of the intermediate layer doping.
    Type: Grant
    Filed: June 9, 2010
    Date of Patent: November 4, 2014
    Assignee: J-Fiber GmbH
    Inventors: Wolfgang Hämmerle, Lothar Brehm, Matthias Auth, Elke Poppotz
  • Patent number: 8805145
    Abstract: The invention relates to a bend insensitive gradient index multimode light conducting fiber comprising a leakage mode dependent optical core diameter that is uniform over its length and numerical aperture that is uniform over its length, a core (1), an inner cladding (2), a refraction index trench (3) and an outer cladding (4), wherein the core (1) includes a core radius R1, an alpha-refraction index profile and a core refraction index difference dn1 with respect to the outer cladding (4), wherein the refraction index trench (3) includes a refraction index trench radius R3 and a trench refraction index difference dn3 with respect to the outer cladding (4), wherein the outer cladding (4) includes an outer cladding radius R4 and a refraction index between 1.40 and 1.55, wherein for a light wavelength of 850 nm and an overfilled launch (OFL), the optical core diameter for a fiber length in a range between 2 m and 300 m decreases by less than 5% and the numerical aperture decreases by less than 2.
    Type: Grant
    Filed: October 18, 2012
    Date of Patent: August 12, 2014
    Assignee: J-Fiber GmbH
    Inventors: Wolfgang Hämmerle, Harald Hein, Christian Genz, Lothar Brehm, Falk Wirth
  • Patent number: 8800324
    Abstract: A method for producing a glass fiber, through longitudinally drawing a preform in a drawing kiln, wherein cooling the glass fiber is performed in at least three time periods, wherein the glass fiber is exposed to a first time based cooling rate above a crystallization temperature range, to a second time based cooling rate that is greater than the first time based cooling rate within the crystallization temperature range, and to a third time based cooling rate which is smaller than the second time based cooling rate below the crystallization temperature range.
    Type: Grant
    Filed: May 17, 2010
    Date of Patent: August 12, 2014
    Assignee: J-Fiber GmbH
    Inventors: Wolfgang Hämmerle, Lothar Brehm, Matthias Auth
  • Publication number: 20140086544
    Abstract: An optical fiber has a core region, a cladding region and at least one spacer layer disposed between the core region and the cladding region. The core region is positively doped and has a positive refractive index with respect to the glass matrix of the optical fiber. The cladding region is negatively doped and has a refractive index of at most zero with respect to the glass matrix. The numerical aperture of the optical fiber is composed of variable proportions of the positively doped core region and the negatively doped cladding region and results from the refractive indices of both regions.
    Type: Application
    Filed: May 24, 2012
    Publication date: March 27, 2014
    Applicant: j-plasma GmbH
    Inventors: Matthias Auth, Jorg Kotzing, Harald Hein, Elke Poppitz, Wolfgang Haemmerle, Lothar Brehm, Christian Genz
  • Publication number: 20140020431
    Abstract: Methods for making a preform for a graded-index multimode fiber by using an inside deposition process are disclosed. The methods are characterized by an iterative refractive index profile correction with the following steps: determining a target refractive index profile for the preform to be produced, carrying out an inside deposition process with fixed volume flows for the reacting gases inside a tube and a given burner speed for all deposited layers, collapsing the tube and measuring the actual refractive index profile, comparing the target profile with the actual profile and calculating a correction value of index differences, converting this correction value in corrected burner speeds as varying process parameter, carrying out a inside deposition process with fixed gas flows and corrected burner speeds for all layers to be deposited.
    Type: Application
    Filed: July 18, 2013
    Publication date: January 23, 2014
    Inventors: Christian Genz, Wolfgang Haemmerle, Lothar Brehm