Patents by Inventor Wolfgang HÄNSEL

Wolfgang HÄNSEL has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230246409
    Abstract: Stabilizing an electromagnetic radiation (1) of an optical oscillator (3), in particular of a laser (13), includes measuring a deviation (35, 37, 43) between the electromagnetic radiation (1) of the optical oscillator (3) and a reference (21, 23, 39, 41) and generating a first deviation signal (35, 37, 43), controlling a first controller (55) with the first deviation signal (35, 37, 43), setting the first deviation signal (35, 37, 43, 38) by controlling at least a first manipulated variable (5, 7, 89) of at least two manipulated variables (5, 7, 89), the first manipulated variable (5, 7, 89) being controlled by a first output signal (57) of the first controller (55) and the first manipulated variable (5, 7, 89) affecting the first electromagnetic radiation (1) of the optical oscillator (3), and generating a modulation signal (65) with a modulation unit (63), and controlling the first or a second manipulated variable (5, 7, 89) with the modulation signal (65), demodulating the first output signal (57) of the f
    Type: Application
    Filed: January 31, 2023
    Publication date: August 3, 2023
    Inventors: Nikolai LILIENFEIN, Wolfgang HÄNSEL, Ronald HOLZWARTH, Simon HOLZBERGER, Marc FISCHER, Frederik BÖHLE
  • Patent number: 11456571
    Abstract: Operating an optical frequency comb assembly includes operating an optical frequency comb source to generate laser light constituting an optical frequency comb and introducing the laser light into a common light path and seeding at least one branch light path by the laser light from the common light path, the branch light path comprising at least one optical element. For the branch light path, a phase difference of a first frequency mode ?1 of the optical frequency comb is determined between laser light coupled out at a reference point within the frequency comb assembly upstream of the at least one optical element and laser light coupled out at a measurement point provided in the branch light path downstream of the at least one optical element. Phase correction for the laser light from the branch light path is based on a deviation of the determined phase difference from a target value.
    Type: Grant
    Filed: March 6, 2020
    Date of Patent: September 27, 2022
    Assignee: Menlo Systems GmbH
    Inventors: Michele Giunta, Wolfgang Hänsel, Ronald Holzwarth
  • Publication number: 20200287344
    Abstract: Operating an optical frequency comb assembly includes operating an optical frequency comb source to generate laser light constituting an optical frequency comb and introducing the laser light into a common light path and seeding at least one branch light path by the laser light from the common light path, the branch light path comprising at least one optical element. For the branch light path, a phase difference of a first frequency mode ?1 of the optical frequency comb is determined between laser light coupled out at a reference point within the frequency comb assembly upstream of the at least one optical element and laser light coupled out at a measurement point provided in the branch light path downstream of the at least one optical element. Phase correction for the laser light from the branch light path is based on a deviation of the determined phase difference from a target value.
    Type: Application
    Filed: March 6, 2020
    Publication date: September 10, 2020
    Inventors: Michele GIUNTA, Wolfgang HÄNSEL, Ronald HOLZWARTH
  • Patent number: 10720750
    Abstract: A method for operating a laser device, including providing a laser pulse in a resonator so that the laser pulse circulates in the resonator, the laser pulse having a carrier wave; determining an offset frequency (f0) of the frequency comb corresponding to the laser pulse, the frequency comb having a plurality of laser modes (fm) at a distance (frep) from one another, the frequencies of which can be described by the formula: fm=m*frep+f0, m being a natural number, and varying the offset frequency (f0) by varying a geometric phase (??) that is imparted to the carrier wave of the laser pulse per resonator circulation.
    Type: Grant
    Filed: March 16, 2015
    Date of Patent: July 21, 2020
    Assignee: MENLO SYSTEMS GMBH
    Inventors: Wolfgang Haensel, Tilo Steinmetz, Marc Fischer, Matthias Lezius, Ronald Holzwarth
  • Patent number: 9705279
    Abstract: In a resonator arrangement (1) including a resonator (2), an interferometer (9) is arranged inside the resonator (2) and includes at least a first and a second interferometer leg (9a, 9b). The two interferometer legs (9a, 9b) have optical path lengths (L1, L2) that differ from each other. According to the invention a splitting ratio is variably adjustable, with which the interferometer (9) splits radiation (8) circulating in the resonator (2) into the first and second interferometer legs (9a, 9b).
    Type: Grant
    Filed: December 22, 2015
    Date of Patent: July 11, 2017
    Assignee: MENLO SYSTEMS GMBH
    Inventors: Ronald Holzwarth, Wolfgang Haensel
  • Publication number: 20170093117
    Abstract: A method for operating a laser device, including providing a laser pulse in a resonator so that the laser pulse circulates in the resonator, the laser pulse having a carrier wave; determining an offset frequency (f0) of the frequency comb corresponding to the laser pulse, the frequency comb having a plurality of laser modes (fm) at a distance (frep) from one another, the frequencies of which can be described by the formula: fm=m*frep+f0, m being a natural number, and varying the offset frequency (f0) by varying a geometric phase (??) that is imparted to the carrier wave of the laser pulse per resonator circulation.
    Type: Application
    Filed: March 16, 2015
    Publication date: March 30, 2017
    Inventors: Wolfgang HAENSEL, Tilo STEINMETZ, Marc FISCHER, Matthias LEZIUS, Ronald HOLZWARTH
  • Publication number: 20160181759
    Abstract: In a resonator arrangement (1) including a resonator (2) an interferometer (9) is arranged inside the resonator (2) and includes at least a first and a second interferometer leg (9a, 9b). The two interferometer legs (9a, 9b) have optical path lengths (L1, L2) that differ from each other. According to the invention a splitting ratio is variably adjustable, with which the interferometer (9) splits radiation (8) circulating in the resonator (2) into the first and second interferometer legs (9a, 9b).
    Type: Application
    Filed: December 22, 2015
    Publication date: June 23, 2016
    Inventors: Ronald Holzwarth, Wolfgang Haensel
  • Patent number: 9276372
    Abstract: In a laser (12, 18) with a laser resonator (13), the laser resonator (13) has a non-linear optical loop mirror (1, 1?), NOLM, which is adapted to guide counter-propagating portions of laser pulses, and to bring the counter-propagating portions of laser pulses into interference with each other at an exit point (4) of the NOLM (1, 1?). The non-linear optical loop mirror (1, 1?) contains a non-reciprocal optical element (7, 7?) on a linear section of the NOLM. In addition to the NOLM, the laser resonator (13) has a linear cavity section. The linear section of the NOLM and the linear cavity section (19) are reassembled on a microoptical bench (112) or within a cylindrical carrier (112).
    Type: Grant
    Filed: September 4, 2014
    Date of Patent: March 1, 2016
    Assignee: MENLO SYSTEMS GMBH
    Inventors: Wolfgang Haensel, Ronald Holzwarth, Ralf Doubek, Michael Mei, Martin Engelbrecht
  • Publication number: 20150071322
    Abstract: In a laser (12, 18) with a laser resonator (13), the laser resonator (13) comprises a non-linear optical loop mirror (1, 1?), NOLM, which is adapted to guide counter-propagating portions of laser pulses, and to bring the counter-propagating portions of laser pulses into interference with each other at an exit point (4) of the NOLM (1, 1?). The invention is non-linear optical loop mirror (1, 1?) comprises a non-reciprocal optical element (7, 7?) on a linear section of the NOLM. In addition to the NOLM, the laser resonator (13) comprises a linear cavity section. The linear section of the NOLM and the linear cavity section (19) a reassembled on a microoptical bench (112) or within a cylindrical carrier (112).
    Type: Application
    Filed: September 4, 2014
    Publication date: March 12, 2015
    Inventors: Wolfgang HAENSEL, Ronald HOLZWARTH, Ralf DOUBEK, Michael MEI, Martin ENGELBRECHT
  • Patent number: 8873601
    Abstract: A laser (12, 18) with a laser resonator (13), the laser resonator (13) having a non-linear optical loop mirror (1, 1?), NOLM, which is adapted to guide counter-propagating portions of laser pulses, and to bring the counter-propagating portions of laser pulses into interference with each other at an exit point (4) of the NOLM (1, 1?). The non-linear optical loop mirror (1, 1?) has a non-reciprocal optical element (7, 7?).
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: October 28, 2014
    Assignee: Menlo Systems GmbH
    Inventors: Wolfgang Haensel, Ronald Holzwarth, Ralf Doubek, Michael Mei
  • Publication number: 20130230071
    Abstract: In a laser (12, 18) with a laser resonator (13), the laser resonator (13) comprises a non-linear optical loop mirror (1, 1?), NOLM, which is adapted to guide counter-propagating portions of laser pulses, and to bring the counter-propagating portions of laser pulses into interference with each other at an exit point (4) of the NOLM (1, 1?). The invention is characterized by the non-linear optical loop mirror (1, 1?) comprising a non-reciprocal optical element (7, 7?).
    Type: Application
    Filed: February 27, 2013
    Publication date: September 5, 2013
    Inventors: Wolfgang HAENSEL, Ronald HOLZWARTH, Ralf DOUBEK, Michael MEI