Patents by Inventor Wolfgang Neuberger

Wolfgang Neuberger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8834458
    Abstract: The invention relates to a system for medicinal treatment, in particular for treating benign prostatic hyperplasia BPH, for use in the event of tumor resection or for use in thoracic surgery. The system comprises a diode laser device for producing a laser beam and to an application system based on optical wave guides that can be endoscopically introduced into a patient. Said system is designed in such a manner that the laser beam, produced by the diode laser device is guided through the application system and is emitted by said application system so that biological tissue can be treated in a selective manner with the emerging laser beam.
    Type: Grant
    Filed: June 16, 2008
    Date of Patent: September 16, 2014
    Assignee: Biolitec Pharma Marketing Ltd
    Inventors: Wolfgang Neuberger, Stefan Spaniol, Thomas Sandrock, Endrik Groenhoff
  • Patent number: 8827991
    Abstract: A device for improved surgical procedures to remove unwanted or hyperplasic tissue from a patient during laser ablation, urological treatments, benign prostatic hyperplasia treatments and other applications. Specially prepared optical waveguide tips allow for enhanced irradiation of desired tissues with light sources including laser diodes, bright LEDs or lamps. A significant fraction of the optical radiation, being transported in the waveguide, is coupled out of the waveguide into the surrounding medium through a peripheral surface at or near the distal end. The optical radiation is chosen to have an appropriate wavelength and sufficient power density, so that the surrounding medium will be changed in the vicinity of at least a part of the peripheral surface area. The changes of the surrounding medium result in a change of its refractive index such that the optical radiation is redirected.
    Type: Grant
    Filed: April 7, 2010
    Date of Patent: September 9, 2014
    Assignee: Biolitec Pharma Marketing Ltd
    Inventors: Wolfgang Neuberger, Walter Cecchetti
  • Patent number: 8815931
    Abstract: Oral formulations and method of formulating photosensitive agents for oral administration during photodynamic therapy (PDT) and Antimicrobial photodynamic therapy (APDT) treatment are presented. The oral formulated photosensitizers show increased solubility and permeability, thus improving the bioavailability of photosensitizers at the treatment site. An orally administered photosensitizer is suitably formulated for mucosal adhesion and absorption via gastrointestinal mucosal membranes. Oral formulation provided herein use lipids and known proteins as carriers for photosensitizers by oral route. Carriers for encapsulating preselected photosensitizers include conventional liposomes, pegylated liposomes, nanoemulsions, nanocrystrals, nanoparticles, fatty emulsions, lipidic formulations, hydrosols, SMEDDS, Alpha-Feto protein (AFP), and Bovine-Serum-Albumin (BSA), fatty emulsions, hot-melt-extrudates and nanoparticles.
    Type: Grant
    Filed: April 27, 2010
    Date of Patent: August 26, 2014
    Assignee: Biolitec Pharma Marketing Ltd
    Inventors: Susanna Gräfe, Nikolay Nifantiev, Albrecht Volker, Wolfgang Neuberger, Gerhard Wieland, Dietrich Scheglmann, Alfred Fahr, Arno Wiehe
  • Patent number: 8801764
    Abstract: A method and device for cosmetic surgery, especially fat reduction and collagen reformation, by means of a high power laser operating at about 980 nm is presented. The cosmetic surgery method substantially reduces or removes localized lipodystrophies, and essentially reduces flaccidity by localized laser heating of adipose tissue using an optical fiber inserted into a treatment area. The method and device are particularly well suited for treating Lipodystrophies with flaccidity High power laser energy is applied to “fat” cells to breakdown the cell walls releasing the cell fluid. The laser radiation is applied through an optical fiber which may be held within a catheter-like device having a single lumen. The optical fiber may have a diffuser mounted on the tip to further apply heating to tissues surrounding the whole tip. A saline solution may also be inserted into the treatment site to aid in the heating of the fat cells and their eventual destruction as well as their removal.
    Type: Grant
    Filed: May 2, 2006
    Date of Patent: August 12, 2014
    Assignee: Biolitec Pharma Marketing Ltd
    Inventors: Danilo Castro Suarez, Wolfgang Neuberger
  • Patent number: 8721631
    Abstract: An improved device and method for safe, accurate and efficient surgical procedures are disclosed. The disclosed device is an optical fiber set with an asymmetric distal end configuration, comprising a bent tip fiber with a fused sleeve as an integral part of it, placed at the fiber's distal (output) end and with a rotatable connector at the proximal (input) side. Fiber tip and tissue-contacting surface located at the distal end of the tip may be constructed with different shape configurations, such as convex tip to improve focusing characteristics, concave tip to achieve diverging irradiation or an expanded beam tip to achieve an effect similar to that obtained by electrosurgical tools. A grip guarantees and enhances the ability to twist and rotate it easily. In another preferred embodiment, twisting maneuvers are enhanced through a special configuration.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: May 13, 2014
    Assignee: Biolite Pharma Marketing Ltd
    Inventor: Wolfgang Neuberger
  • Patent number: 8709004
    Abstract: A method and device for improved minimally invasive vascular treatments. The method comprises introducing a catheter into a vein to be treated. The catheter is adapted to introduce an energy transmitting member and a fluid into the vein to be treated. The fluid introduced via the catheter can include, but is not limited to: saline solutions, cooled saline solutions, liquids for vapor generation, vasoconstricting agents, anesthetic agents and/or a formulation containing an ingredient which can be activated by the applied energy.
    Type: Grant
    Filed: April 7, 2010
    Date of Patent: April 29, 2014
    Assignee: Biolitec Pharma Marketing Ltd
    Inventors: Julio H. G. Ferreira, Jorge O. Löpez D'Ambola, Wolfgang Neuberger, Antonio C. Reichelt, Jorge E. Soracco
  • Patent number: 8685072
    Abstract: A device and method for restoring functionality of blood vessels are disclosed. Laser energy is accurately and precisely applied in order to restore vessel functionality. This is accomplished by a controlled, reliable and specific shrinkage and/or strengthening of the vessel structure by controlled transport of laser radiation via an optical fiber to the treatment site. Laser wavelength is chosen according to the required penetration depth in tissue. In a preferred embodiment, wavelength of approximately 1470 nm is used. A mini-endoscope is preferably used to control the process by visual inspection from the inside of the vessel but other means may also be combined to control the procedure. Full 360° radial emission, i.e., delivery of laser radiation perpendicularly or fairly inclined relative to the veins axis, is beneficial, and is accomplished by means of a radial emitting fiber.
    Type: Grant
    Filed: September 8, 2010
    Date of Patent: April 1, 2014
    Assignee: Biolitec Pharma Marketing Ltd
    Inventor: Wolfgang Neuberger
  • Patent number: 8655130
    Abstract: Non-circular core optical preforms are provided whose core-cladding interface edge has a sharpness that can be accurately controlled according to application-specific needs. Preform design and fiber fabrication is handled such that precisely edged fiber cores are maintained in the drawn fibers. This provides for markedly improved fiber functions, which rely on the non-circular structure of the core. In short, optical fibers having non-circular wave-guiding regions with precise, controlled edges are provided. By using selected manufacturing techniques that employ lower temperatures than commonly used, prior art techniques and by choosing proper materials with appropriate viscosities for core and cladding, the rounding of the edges of the wave-guiding region is precisely maintained in the final optical fibers.
    Type: Grant
    Filed: May 27, 2010
    Date of Patent: February 18, 2014
    Assignee: Biolitec Pharma Marketing, Ltd
    Inventor: Wolfgang Neuberger
  • Publication number: 20130310819
    Abstract: An improved system for safe and efficient generation of plasmas and vapors bubbles with continuous wave radiations and low levels of power densities, sufficient to treat medical pathologies and to avoid the creation damage to healthy tissue is provided. Transmission means in different configurations are used to achieve a high absorption in water, which is able to initiate plasma with low levels of power density. Once plasma and vapor bubbles are formed, they absorb other wavelengths in addition to the one that initiated it. Other wavelengths, more efficiently generated by diodes or diode pumped lasers, are added into the beam to improve treatment efficiency. This modulated plasma produces fast tissue ablation and good hemostasis effect with minimal overheating of remaining tissue. After plasma and high-energy vapors are generated, only laser radiation that passes through the plasma bubble directly interacts with soft tissues.
    Type: Application
    Filed: November 9, 2012
    Publication date: November 21, 2013
    Applicant: Biolitec Pharma Marketing Ltd.
    Inventors: Wolfgang Neuberger, Walter Cecchetti, Leonardo Cecchetti, Filiberto Zattoni
  • Patent number: 8425495
    Abstract: A laser device and method for treating ophthalmic diseases is enclosed. The laser device and method for treating a variety of ophthalmic diseases comprises a system for irradiating the eye with electromagnetic irradiation with a wavelength in the range of 654-681 nm from at least one high power laser diode. The optical system of the present invention being able to focus the radiation onto a spot sized of about 100 ?m. The system preferably comprises a laser source and ancillary equipment to direct and regulate the radiation. The use of this wavelength range makes the present invention effective for a wide variety of ophthalmic indications. It is capable of providing photocoagulation treatments for diseases such as glaucoma, diabetic retinopathy and age-related macular degeneration.
    Type: Grant
    Filed: June 17, 2005
    Date of Patent: April 23, 2013
    Assignee: Biolitec Pharma Marketing Ltd
    Inventors: Wolfgang Neuberger, Detlev Berndt, Julian Maughan
  • Patent number: 8414880
    Abstract: Photosensitizer mixtures and method of treating cellulites by light illumination are presented. Photosensitizer is combined with cellular products, e.g. adipose cells, collagen, previously removed by liposuction. Concentrations used depend on treatment area, cellulite stage and whether cellulites are in depressed or elevated skin areas. The cosmetic treatment reduces/removes localized lipodystrophies, flaccidity, cellulite using localized laser, LED, etc emissions. Applied light energy destroys “fat” cells by a combination of chemical reactions primarily, and temperature, wherein cell walls break releasing cell fluid. Transmission devices guide radiation to the treatment site. One or more light sources like laser diodes or LEDs may be coupled into one or more optical fibers to increase the covered area and increase the amount of radiation in that area. Optical fibers can be introduced percutaneously or interstitially. Cell fluid in the treatment area is removed by a combination of techniques.
    Type: Grant
    Filed: October 6, 2010
    Date of Patent: April 9, 2013
    Assignee: Bioliter Pharme Marketing Ltd
    Inventors: Danilo Castro, Wolfgang Neuberger
  • Patent number: 8409176
    Abstract: A system/method for destruction/ablation of stones, calculi or other hard substances using laser is disclosed. Lithotripsy is particularly benefitted. The system comprises a diode laser source, one or more optical fibers and a liquid delivery system creating a liquid environment around stones (calculi). At least one emitted wavelength is highly absorbed in surrounding/covering medium, causing evaporation and cavitation effects that lead to stone/calculi destruction. Different radiation configurations may be used. in one embodiment continuous radiation is used to create sparkler-less plasma bubbles to destroy hard substances. In another embodiment high peak power pulsed radiation is used. Wavelengths of 1470 nm, 1940 nm, or 1550 nm are preferred. Additionally device/method is used with another wavelength having absorption in water e.g. 980 nm. Safer/improved methods/system provide enhanced lithotripsy treatments with shorter treatment times to destroy a wider range of stones with less tissue damage risk.
    Type: Grant
    Filed: December 1, 2009
    Date of Patent: April 2, 2013
    Assignee: Biolitec Pharma Marketing Ltd
    Inventors: Walter Cecchetti, Wolfgang Neuberger, Leonardo Cecchetti
  • Publication number: 20130041357
    Abstract: Eye-safe, low-power-density, Class 1 or Class 3R laser treatment systems for medical applications are disclosed. Systems having controlled power and stray irradiation can meet laser safety requirements according to IEC 60825-1:2007 or equivalent for eye-safe rating; classification as laser-Class 1 or as laser-Class 3R. Laser system comprises a diode laser source, an optical fiber probe, means for detecting and identifying said optical probe and means to ensure that laser power transmitted from the fiber probe is limited to pre-specified maximum power level per application; laser wavelength; emission characteristics; probe characteristics; limiting values according to applied safety regulations. Device can identify the connected optical fiber probe to exclude using non-conforming optical fiber probes and/or to limit maximum output to optical powers in compliance with laser safety regulations. System preferably operates at a wavelength of 1400 nm or higher.
    Type: Application
    Filed: July 25, 2012
    Publication date: February 14, 2013
    Inventor: Wolfgang Neuberger
  • Publication number: 20130035684
    Abstract: A medical laser system is disclosed for ablation/resection/coagulation of unwanted tissue, including parenchymal lung resection to facilitate/accelerate growth/wound healing. System comprises laser energy sources and conveying means, optical fiber. A diode laser source emits above 1330 nm, at least 50 Watts, through an optical fiber onto target tissue. Wavelength, 1340 nm is preferred. Wavelength ranges 1330-1390 nm and 1450-1550 nm, are also useful. Additionally a wavelength, between 800-1100 nm, can be used. Wavelength differences maximize beam quality. Two radiation sources emit simultaneously from fiber's distal end. One emits at ˜1320 nm and the other emits at ˜1340 nm or ˜1360 nm with maximum total output power of 60 W or larger. Preferably, the ratio of the power levels is fixed at 1:1.5 and output power is the sum of individual lasers. High beam quality and power density system combines emissions from a diode laser and a fiber laser.
    Type: Application
    Filed: August 4, 2011
    Publication date: February 7, 2013
    Inventor: Wolfgang Neuberger
  • Publication number: 20120289950
    Abstract: An endoluminal lasing system for treating vascular disorders is disclosed. Treatment comprises an elongated member that conveys laser radiation to tissue and a motorized mechanism, through which elongated member is rotated. As motor drives, its movement s spins elongated member leading to a spiral movement as physician manually moves member in a longitudinal direction. In a preferred embodiment, elongated member is an optical fiber for endoluminal vessel treatment. In another preferred embodiment optical fiber comprises an off-axis firing distal end or side-firing distal end. Optical fiber can be a radial emitting fiber. Spin velocity can be varied according to treatment needs, i.e., pathology, type of vessel, energy source, vessel diameter, etc. One advantage, spiral movement prevents adherence to vessel wall in treatments. Another advantage is that radiation is applied more uniformly along vessel wall. The vessel wall is, thus more evenly treated under most conditions.
    Type: Application
    Filed: January 20, 2011
    Publication date: November 15, 2012
    Inventor: Wolfgang Neuberger
  • Publication number: 20120289947
    Abstract: A device and method for safe, substantially blood-free vessel removal that preserves vein patency are disclosed. A specially designed lens-free laser vessel stripping device is inserted into the body and coupled to a laser energy source, to remove a major vessel while cutting and coagulating its lateral branches with minimal damage to surrounding tissue. Energy source is preferably a diode laser source emitting at wavelengths of about 980 nm, about 1470 nm or a combination of these wavelengths for obtaining best ablative and coagulative effects, thus achieving a safe and efficient removal of vessels with minimum collateral damage and thus faster recovery. Veins harvested using this device and method are better candidates for autologous grafts in other surgeries.
    Type: Application
    Filed: January 18, 2011
    Publication date: November 15, 2012
    Inventor: Wolfgang Neuberger
  • Publication number: 20120283619
    Abstract: Minimally invasive methods and devices for endoluminally treating female fallopian tubes or male vas deferens of mammals are presented as a permanent method of contraception. In preferred embodiments, medical devices for male and female sterilization comprise laser radiation source operating at one or more preselected wavelengths between about 980 nm and about 1950 nm, preferably at least one of 980 nm, 1470 nm and 1950 nm; treatment waveguide with a radial or cylindrical radiation emitting tip; viewing scope; and a temperature sensor. In another preferred embodiment, a minimally-invasive permanent contraception method for males and females comprises the steps of introducing at least one treatment waveguide in a body cavity; positioning the treatment waveguide inside a body cavity; irradiating; and repeating the procedure in companion body cavity to inhibit fertilization.
    Type: Application
    Filed: May 5, 2011
    Publication date: November 8, 2012
    Inventors: Martin Sabado, Wolfgang Neuberger
  • Patent number: 8292935
    Abstract: A method and device used for treating body cells affected by abnormal cell growth or by oncogenic viruses. In particular the invention relates to photonic device for treating gynecological problems comprising at least one light source incorporated into the irradiation head or into the hand piece or as a external unit connected by light guide. The light source used in the photonic device has a LED, Laser or lamps. This photonic device is used for treating a subject having unwanted cell proliferation, example dysplasia of the portio and/or cervix with Photodynamic therapy (PDT). The advantage of using LED device is, for its radiation safety, cost effectiveness and is easy to handle compared to laser system. A drug applicator is also described which is employed for homogenously application of photoactive drug in the affected area.
    Type: Grant
    Filed: August 31, 2007
    Date of Patent: October 23, 2012
    Assignee: Bistitec Pharma Marketing Ltd
    Inventors: Wolfgang Neuberger, Stefan Spaniol
  • Publication number: 20120259187
    Abstract: Dynamic colorectal PDT methods, devices and photosensitizer compositions to treat abnormal cell growth in anal tissue such as perianal and intra-anal intraepithelial neoplasia grade III are presented. Dynamic colorectal PDT method comprises the steps of administering topically, intravenously or orally a photosensitizer composition; irradiating; monitoring treatment parameters before, during and/or after irradiation. Photosensitizer composition comprises Temoporfin and excipients/carriers, appropriate for the application method. An applicator is provided for colorectal PDT treatments enhancing irradiation delivery and monitoring treatment parameters. Preferably, applicator is made of a material, used to monitor the fluence rate simultaneously while doing optical spectroscopy. Measurement probe devices are provided for monitoring PDT treatment parameters in-vivo.
    Type: Application
    Filed: January 24, 2012
    Publication date: October 11, 2012
    Inventors: Bastiaan Kruijt, Eric M. van der Snoek, Henricus J.C.M. Sterenborg, Arjen Amelink, Dominic J. Robinson, Wolfgang Neuberger
  • Patent number: 8263557
    Abstract: A method and a composition for photochemical cross linking of collagen by photoactive agent in-vivo are presented. The method includes a non-toxic photoactive formulation of the composition with collagen, which is administered to treatment area locally; followed by irradiation with suitable wavelength. In one of the embodiment liposomal formulated mTHPC is added to the collagen and is irradiated with a 652 nm laser, resulting in producing efficient collagen scaffolds with strengthen and stabilized microstructure, thus improving the physiochemical properties of the collagen scaffold. It improves the thermostability, mechanical property and swelling ratio of newly formed scaffold. Photochemical cross-linked collagens shows antimicrobial effect, when irradiated with suitable wavelength it disinfects the treatment site and curbs microbial growth.
    Type: Grant
    Filed: July 27, 2007
    Date of Patent: September 11, 2012
    Assignee: Biolitec Pharma Marketing Ltd
    Inventors: Susanna Gräfe, Wolfgang Neuberger, Danilo Castro