Patents by Inventor Wolfgang Osten

Wolfgang Osten has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11231269
    Abstract: The present invention relates to an arrangement and a method for single-shot interferometry which can be used for detecting distance, profile, shape, undulation, roughness or the optical path length in or on optically rough or smooth objects or else for optical coherence tomography (OCT). The arrangement comprises a light source, an interferometer, in which an end reflector is arranged in the reference beam path, and also a detector for detecting an interferogram. In the reference beam path of the interferometer, the end reflector can be embodied with three plane reflecting surfaces as a prism mirror or air mirror assembly in order to generate between reference and object beams a lateral shear of magnitude delta_q for obtaining a spatial interferogram. The embodiment of said assembly with regard to the angles and the arrangement of the reflecting surfaces makes possible a large aperture angle for a high numerical aperture.
    Type: Grant
    Filed: December 7, 2017
    Date of Patent: January 25, 2022
    Assignee: Universität Stuttgart
    Inventors: Klaus Körner, Wolfgang Osten
  • Publication number: 20200408505
    Abstract: The present invention relates to an arrangement and a method for single-shot interferometry which can be used for detecting distance, profile, shape, undulation, roughness or the optical path length in or on optically rough or smooth objects or else for optical coherence tomography (OCT). The arrangement comprises a light source, an interferometer, in which an end reflector is arranged in the reference beam path, and also a detector for detecting an interferogram. In the reference beam path of the interferometer, the end reflector can be embodied with three plane reflecting surfaces as a prism mirror or air mirror assembly in order to generate between reference and object beams a lateral shear of magnitude delta_q for obtaining a spatial interferogram. The embodiment of said assembly with regard to the angles and the arrangement of the reflecting surfaces makes possible a large aperture angle for a high numerical aperture.
    Type: Application
    Filed: December 7, 2017
    Publication date: December 31, 2020
    Applicant: Universität Stuttgart
    Inventors: Klaus Körner, Wolfgang Osten
  • Patent number: 10612905
    Abstract: An interferometer for areally measuring an optically smooth surface is presented, including means for illuminating a surface region with a plurality of discrete object waves from different directions and comprising means which, on a detector, superimpose object waves reflected at the surface onto a reference wave that is coherent with a plurality of object waves in order to form an interferogram. The interferometer is distinguished by virtue of it being configured to illuminate the surface with a plurality of object waves at the same time and produce the reference wave by way of a Fizeau beam splitter plate or a Fizeau objective, and by virtue of the interferometer including an interferometer stop that is arranged in the beam path upstream of the detector, and imaging optics, wherein the interferometer stop is situated within, or slightly outside of, the Fourier plane of the imaging optics and said interferometer stop filters the object waves reflected by the surface.
    Type: Grant
    Filed: November 14, 2016
    Date of Patent: April 7, 2020
    Assignee: UNIVERSITAET STUTTGART
    Inventors: Goran Baer, Christof Pruss, Wolfgang Osten
  • Patent number: 10481020
    Abstract: The present invention relates to a method and an apparatus for establishing residual stresses in objects, in particular in coated objects, and to a method and an apparatus for coating objects. The method comprises: impinging a surface (8) of the object (5) with laser light and generating a hole or a pattern of holes and/or locally heated points in the object (5); establishing the surface deformations by an optical deforming measuring method after the object (5) is impinged by laser light; establishing the residual stresses present in the object (5) from the measured surface deformations, wherein the generation of the hole pattern is carried out by an optical scanning apparatus which comprises an optical deflection and/or modulation arrangement for controllable deflection and/or modulation of the laser light, and/or a focusing arrangement for controllable focusing of the laser light.
    Type: Grant
    Filed: May 20, 2016
    Date of Patent: November 19, 2019
    Assignee: Universität Stuttgart
    Inventors: Wolfgang Osten, Giancarlo Pedrini, Rainer Gadow, Klaus Körner
  • Patent number: 10323938
    Abstract: The invention relates to a method for calibrating a measuring device, comprising the following steps: moving, with finite accuracy and thus with positioning error, to various points that lie in a testing volume of the measuring device and that can be characterized by spatial and/or angular coordinates, generating measurement signals at the respective points, and determining parameters of a computing model of the measuring device from the measurement signals and the spatial and/or angular coordinates. The method is characterized in that a coordinate system to which the coordinates of the points of the testing volume relate is defined from points moved to with error, by associating predetermined coordinate values with exactly six coordinates of three points.
    Type: Grant
    Filed: May 13, 2015
    Date of Patent: June 18, 2019
    Assignee: Carl Mahr Holding GmbH
    Inventors: Goran Baer, Christof Pruss, Wolfgang Osten
  • Publication number: 20180328711
    Abstract: An interferometer for areally measuring an optically smooth surface is presented, including means for illuminating a surface region with a plurality of discrete object waves from different directions and comprising means which, on a detector, superimpose object waves reflected at the surface onto a reference wave that is coherent with a plurality of object waves in order to form an interferogram. The interferometer is distinguished by virtue of it being configured to illuminate the surface with a plurality of object waves at the same time and produce the reference wave by way of a Fizeau beam splitter plate or a Fizeau objective, and by virtue of the interferometer including an interferometer stop that is arranged in the beam path upstream of the detector, and imaging optics, wherein the interferometer stop is situated within, or slightly outside of, the Fourier plane of the imaging optics and said interferometer stop filters the object waves reflected by the surface.
    Type: Application
    Filed: November 14, 2016
    Publication date: November 15, 2018
    Applicant: UNIVERSITAET STUTTGART
    Inventors: Goran Baer, Christof Pruss, Wolfgang Osten
  • Patent number: 10066997
    Abstract: The invention relates to methods and to devices for generating multispectral illuminating light having an addressable spectrum, for adaptive multispectral imaging and for capturing structural and/or topographical information of an object or of the distance to an object. The illuminating device comprises a multispectral light source and a modulator for temporal modulation of the individual spectral components of the multispectral light source having modulation frequencies. The multispectral light source comprises at least one light source having a continuous, quasi-continuous, or frequency comb spectrum and wavelength-dispersive means, or an assembly or array of monochromatic or quasi-monochromatic light sources having emission wavelengths or emission wavelength bands which are different from one another in each case.
    Type: Grant
    Filed: February 17, 2015
    Date of Patent: September 4, 2018
    Assignee: Universität Stuttgart
    Inventors: Klaus Körner, Wolfgang Osten, Tobias Boettcher, Wolfram Lyda, Marc Gronle
  • Publication number: 20180202872
    Abstract: The present invention relates to a method and an apparatus for establishing residual stresses in objects, in particular in coated objects, and to a method and an apparatus for coating objects. The method comprises: impinging a surface (8) of the object (5) with laser light and generating a hole or a pattern of holes and/or locally heated points in the object (5); establishing the surface deformations by an optical deforming measuring method after the object (5) is impinged by laser light; establishing the residual stresses present in the object (5) from the measured surface deformations, wherein the generation of the hole pattern is carried out by an optical scanning apparatus which comprises an optical deflection and/or modulation arrangement for controllable deflection and/or modulation of the laser light, and/or a focusing arrangement for controllable focusing of the laser light.
    Type: Application
    Filed: May 20, 2016
    Publication date: July 19, 2018
    Applicant: Universität Stuttgart
    Inventors: Wolfgang Osten, Giancarlo Pedrini, Rainer Gadow, Klaus Körner
  • Patent number: 9772275
    Abstract: Disclosed herein is a measuring probe and an arrangement for measuring spectral absorption, preferably in the infrared. Furthermore, the invention relates to a method for spectroscopically measuring absorption. The measuring probe may comprise a cutting apparatus configured to cut a slice or respectively flap off of a sample to be measured; a measuring gap configured to accommodate the sample slice; an optical window element for coupling measuring light into, or respectively out of the measuring gap; and an end reflector designed and arranged to reflect the measuring light propagated through the measuring gap back into the measuring gap. The arrangement for measuring spectral absorption may comprise the measuring probe, a light source and an apparatus for the spectral analysis of the measuring light coupled out of the measuring gap.
    Type: Grant
    Filed: August 31, 2015
    Date of Patent: September 26, 2017
    Assignee: Universität Stuttgart
    Inventors: Klaus Koerner, Christof Pruss, Alois Herkommer, Wolfgang Osten, Daniel Claus
  • Patent number: 9739594
    Abstract: Disclosed are methods and an assembly for robust one-shot interferometry, in particular for optical coherence tomography according to the spatial domain approach (SD-OCT) and/or according to the light-field approach. In one embodiment, the method and the assembly may be used for measurements on material and living tissue, for distance measurement, for 2D or 3D measurement with a finely structured light source imaged onto the object in a diffraction-limited way, or with spots thereof. The assembly may comprise an interferometer having object and reference arms and a detector for electromagnetic radiation. In other embodiments, during a detection process, a plurality of spatial interferograms may be formed by making an inclined and/or curved reference wavefront interfere with an object wavefront for each measurement point. The resulting spatial interferograms may be detected in a single detector frame and may be further evaluated via a computer program.
    Type: Grant
    Filed: September 3, 2014
    Date of Patent: August 22, 2017
    Assignee: Universität Stuttgart
    Inventors: Klaus Koerner, Wolfgang Osten
  • Publication number: 20170074648
    Abstract: The invention relates to a method for calibrating a measuring device, comprising the following steps: moving, with finite accuracy and thus with positioning error, to various points that lie in a testing volume of the measuring device and that can be characterized by spatial and/or angular coordinates, generating measurement signals at the respective points, and determining parameters of a computing model of the measuring device from the measurement signals and the spatial and/or angular coordinates. The method is characterized in that a coordinate system to which the coordinates of the points of the testing volume relate is defined from points moved to with error, by associating predetermined coordinate values with exactly six coordinates of three points.
    Type: Application
    Filed: May 13, 2015
    Publication date: March 16, 2017
    Inventors: Goran Baer, Christof Pruss, Wolfgang Osten
  • Publication number: 20170059408
    Abstract: The invention relates to methods and to devices for generating multispectral illuminating light having an addressable spectrum, for adaptive multispectral imaging and for capturing structural and/or topographical information of an object or of the distance to an object. The illuminating device comprises a multispectral light source and a modulator for temporal modulation of the individual spectral components of the multispectral light source having modulation frequencies. The multispectral light source comprises at least one light source having a continuous, quasi-continuous, or frequency comb spectrum and wavelength-dispersive means, or an assembly or array of monochromatic or quasi-monochromatic light sources having emission wavelengths or emission wavelength bands which are different from one another in each case.
    Type: Application
    Filed: February 17, 2015
    Publication date: March 2, 2017
    Inventors: Klaus Körner, Wolfgang Osten, Tobias Boettcher, Wolfram Lyda, Marc Gronle
  • Patent number: 9383306
    Abstract: Disclosed herein is an apparatus for spectroscopic ellipsometry, preferably for infrared spectroscopic ellipsometry, and a method for spectroscopic ellipsometry employing the apparatus. In some embodiments, the apparatus may comprise a light source (12), a detector (30), a polarizer (40), an analyzer (41), and a measuring probe (10). In one embodiment, the measuring probe may comprise an ATR prism (50) having at least one first surface having at least one measuring portion (M) configured to be brought in optical contact with a measured object (72), and at least one second surface having at least one reflective portion (RX).
    Type: Grant
    Filed: November 10, 2015
    Date of Patent: July 5, 2016
    Assignee: Universität Stuttgart
    Inventors: Klaus Koerner, Arnulf Roeseler, Daniel Claus, Wolfgang Osten
  • Publication number: 20160146722
    Abstract: Disclosed herein is an apparatus for spectroscopic ellipsometry, preferably for infrared spectroscopic ellipsometry, and a method for spectroscopic ellipsometry employing the apparatus. In some embodiments, the apparatus may comprise a light source (12), a detector (30), a polarizer (40), an analyzer (41), and a measuring probe (10). In one embodiment, the measuring probe may comprise an ATR prism (50) having at least one first surface having at least one measuring portion (M) configured to be brought in optical contact with a measured object (72), and at least one second surface having at least one reflective portion (RX).
    Type: Application
    Filed: November 10, 2015
    Publication date: May 26, 2016
    Inventors: Klaus Koerner, Arnulf Roeseler, Daniel Claus, Wolfgang Osten
  • Publication number: 20160143539
    Abstract: Disclosed herein is a measuring probe, an apparatus, and a method for infrared spectroscopy. In some embodiments the measuring probe may have an elongated form with a first end for coupling and decoupling infrared light into and out of the measuring probe and a second end. In other embodiments, the measuring probe may comprise an attenuated total reflection (ATR) prism arranged at the second end of the measuring probe. The ATR prism may include at least a first surface having at least one measuring portion configured to be brought in optical contact with a measured object. The ATR prism may include at least a second surface having at least one reflective portion. In some embodiments, the ATR prism may include a cutting portion for cutting through the measured object.
    Type: Application
    Filed: November 9, 2015
    Publication date: May 26, 2016
    Inventors: Klaus Koerner, Daniel Claus, Alois Herkommer, Wolfgang Osten
  • Publication number: 20160076997
    Abstract: Disclosed herein is a measuring probe and an arrangement for measuring spectral absorption, preferably in the infrared. Furthermore, the present disclosure relates to a method for spectroscopically measuring absorption. In some embodiments, the measuring probe may comprise a cutting apparatus configured to cut a slice or respectively flap off of a sample to be measured; a measuring gap configured to accommodate the sample slice; an optical window element for coupling measuring light into, or respectively out of the measuring gap; and an end reflector designed and arranged to reflect the measuring light propagated through the measuring gap back into the measuring gap. The arrangement for measuring spectral absorption may comprise the measuring probe, a light source and an apparatus for the spectral analysis of the measuring light coupled out of the measuring gap.
    Type: Application
    Filed: August 31, 2015
    Publication date: March 17, 2016
    Inventors: Klaus Koerner, Christof Pruss, Alois Herkommer, Wolfgang Osten, Daniel Claus
  • Patent number: 9175954
    Abstract: The invention relates to a method and arrangement for short coherence holography for distance measurement, for profile detection and/or for 3D detection of one or more object elements and/or object areas and/or objects or for readout of holographic volume memories with a holographic interferometer and with at least one short coherence light source. For each optically detected object element in the hologram the holographic interferometer has an optical path difference clearly unequal to zero. At least one spectrally integrally detecting, rastered detector is arranged. The short coherence light source with frequency comb is designed with the optical delay length Y1. Detected holograms are digitally reconstructed. Relative distances of object elements are digitally calculated from the hologram reconstructions, so that a 3D point cloud of object elements and/or object areas and/or objects is produced.
    Type: Grant
    Filed: December 23, 2011
    Date of Patent: November 3, 2015
    Assignee: Universitaet Stuttgart
    Inventors: Klaus Koerner, Giancarlo Pedrini, Christof Pruss, Wolfgang Osten
  • Patent number: 9068862
    Abstract: The invention relates to an improved encoding disk for an optical rotation angle sensor or a rotary encoder, an optical rotation sensor or rotary encoder comprising an improved encoding disk, and a method for optically correcting or compensating for an angle measuring error of a rotary encoder, in particular an angle measuring error which is contingent on a displacement or decentralization of the encoding disk. The encoding disk (20) comprises at least one measuring track (22) and at least one compensating track (24), wherein the measuring track (22) is in a first radial region of the encoding disk (20); and the compensating track (24) is centered with regard to the measuring track (22) on a second radial region of the encoding disk (20) so that the center of the measuring track (22) coincides with the center of the compensating track (24).
    Type: Grant
    Filed: September 8, 2010
    Date of Patent: June 30, 2015
    Assignee: University of Stuttgart
    Inventors: David Hopp, Christof Pruss, Wolfgang Osten
  • Publication number: 20150077760
    Abstract: Disclosed are methods and an assembly for robust one-shot interferometry, in particular for optical coherence tomography according to the spatial domain approach (SD-OCT) and/or according to the light-field approach. In one embodiment, the method and the assembly may be used for measurements on material and living tissue, for distance measurement, for 2D or 3D measurement with a finely structured light source imaged onto the object in a diffraction-limited way, or with spots thereof. The assembly may comprise an interferometer having object and reference arms and a detector for electromagnetic radiation. In other embodiments, during a detection process, a plurality of spatial interferograms may be formed by making an inclined and/or curved reference wavefront interfere with an object wavefront for each measurement point. The resulting spatial interferograms may be detected in a single detector frame and may be further evaluated via a computer program.
    Type: Application
    Filed: September 3, 2014
    Publication date: March 19, 2015
    Inventors: Klaus Koerner, Wolfgang Osten
  • Patent number: 8934104
    Abstract: An arrangement and a method are provided for robust interferometry for detecting distance, depth, profile, form, undulation, flatness deviation and/or roughness or the optical path length in or on technical or biological objects, including in layered form, or else for optical coherence tomography (OCT), with a source of electromagnetic radiation and with an interferometer, in particular also in the form of an interference microscope, having an object beam path and having a reference beam path, in which an end reflector is arranged, and a line-scan detector for detecting electromagnetic radiation in the form of at least one spatial interferogram.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: January 13, 2015
    Assignee: Universitaet Stuttgart
    Inventors: Klaus Koerner, Reinhard Berger, Wolfgang Osten