Patents by Inventor Wolfgang Peisl

Wolfgang Peisl has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7817921
    Abstract: In a method for determining a power of an amplified spontaneous emission in an optical fiber amplifier for a WDM signal, wherein the optical fiber amplifier includes at least a first amplifier stage having a predetermined output power set for a measured input power, a first mean inversion is determined for the first amplifier stage. A first output power of the amplified spontaneous emission is determined at an output of the first amplifier stage by reference to tabulated values which depend on the first mean inversion.
    Type: Grant
    Filed: September 26, 2005
    Date of Patent: October 19, 2010
    Assignee: Nokia Siemens Networks GmbH & Co. KG
    Inventors: Lutz Rapp, Wolfgang Peisl
  • Patent number: 7627248
    Abstract: A method for pre-emphasising transmitted signals in channels for multiplex signals along a transmission path comprising supply and/or branch points is provided. According to the method, relative degradations of the signal-to-noise intervals between transmitted signals via any category or group of channels—i.e. express and add or drop channels or add-drop channels are taken into account. A point-to-point link and for transparent optical networks may be used. To this end, the average signal powers of different channel groups are set relative to one another in order to obtain predetermined signal-to-noise intervals for each group. In addition, the signal-to-noise intervals within a channel group are equalized at their termination points. Regulation protocols for controlling the pre-emphasising steps are provided.
    Type: Grant
    Filed: May 3, 2004
    Date of Patent: December 1, 2009
    Assignee: Nokia Siemens Networks GmbH & Co KG
    Inventors: Wolfgang Peisl, Lutz Rapp
  • Patent number: 7460784
    Abstract: The invention relates to a method for easily and rapidly preemphasizing an optical multiplex signal transmitted by an emitter to a receiver consisting wherein signal-to-noise ratios are equalized by means of simple measurement or new adjustment of signal power on the bandwidth of the optical multiplex signal, at least in the receiver, instead of measuring the noise output power or the signal-to-noise ratio. Said invention is based on a balance of the signal-to-noise ratios which are authorized by a transmitting system, in which the spectral influences of gain profiles, noise effects and dampings are taken into consideration. In particular, when DWDM transmission techniques are applied, in which adjacent channel spacings of the optical multiplex signal are very low, the inventive method makes it possible to use a small number of sensitive and high-resolution measuring instruments for pre-emphasis control.
    Type: Grant
    Filed: April 16, 2004
    Date of Patent: December 2, 2008
    Assignee: Nokia Siemens Networks GmbH & Co. KG
    Inventors: Christian Eder, Wolfgang Peisl, Lutz Rapp
  • Publication number: 20070269209
    Abstract: In a method for determining a power of an amplified spontaneous emission in an optical fiber amplifier for a WDM signal, wherein the optical fiber amplifier includes at least a first amplifier stage having a predetermined output power set for a measured input power, a first mean inversion is determined for the first amplifier stage. A first output power of the amplified spontaneous emission is determined at an output of the first amplifier stage by reference to tabulated values which depend on the first mean inversion.
    Type: Application
    Filed: September 26, 2005
    Publication date: November 22, 2007
    Applicant: SIEMENS AKTEIENGESELLSCHAFT
    Inventors: Lutz Rapp, Wolfgang Peisl
  • Publication number: 20060159450
    Abstract: A method for pre-emphasising transmitted signals in channels for multiplex signals along a transmission path comprising supply and/or branch points is provided. According to the method, relative degradations of the signal-to-noise intervals between transmitted signals via any category or group of channels—i.e. express and add or drop channels or add-drop channels are taken into account. A point-to-point link and for transparent optical networks may be used. To this end, the average signal powers of different channel groups are set relative to one another in order to obtain predetermined signal-to-noise intervals for each group. In addition, the signal-to-noise intervals within a channel group are equalized at their termination points. Regulation protocols for controlling the pre-emphasising steps are provided.
    Type: Application
    Filed: May 3, 2004
    Publication date: July 20, 2006
    Inventors: Wolfgang Peisl, Lutz Rapp
  • Patent number: 7055084
    Abstract: A method and system for regulating the decision threshold and the sampling clock phase of a data regenerator for a binary signal, wherein error correction signals for erroneous 1-bits and 0-bits are used for regulating the decision threshold of a decision stage, and further phase correction signals between transitions of binary signals serve for the phase regulation of a sampling clock signal.
    Type: Grant
    Filed: February 11, 2002
    Date of Patent: May 30, 2006
    Assignee: Siemens Aktiengesellschaft
    Inventors: Harald Bock, Wolfgang Peisl, Andreas Faerbert
  • Publication number: 20020163985
    Abstract: A method and system for regulating the decision threshold and the sampling clock phase of a data regenerator for a binary signal, wherein error correction signals for erroneous 1-bits and 0-bits are used for regulating the decision threshold of a decision stage, and further phase correction signals between transitions of binary signals serve for the phase regulation of a sampling clock signal.
    Type: Application
    Filed: February 11, 2002
    Publication date: November 7, 2002
    Inventors: Harald Bock, Wolfgang Peisl, Andreas Faerbert