Patents by Inventor Wolfram Urbanek

Wolfram Urbanek has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160181762
    Abstract: A high power diode laser module is provided with improved high temperature handling and reliability, the module including a housing made of a thermally conductive material and providing a module interior extending between a plurality of housing surfaces, at least one diode laser disposed in the module interior and situated to emit a laser beam, one or more optical components disposed in the module interior and coupled to the at least one diode laser so as to change one or more characteristics of the laser beam, a waveguide in optical communication with the module interior and situated to receive the laser beam from the one or more optical components, and an optical absorber disposed in the housing and situated to receive stray light which is associated with the laser beam and which is propagating in the module interior so as to absorb the stray light and conduct heat associated with the stray light away from the module interior and into the housing.
    Type: Application
    Filed: December 16, 2015
    Publication date: June 23, 2016
    Applicant: nLIGHT Photonics Corporation
    Inventors: David C. Dawson, Wolfram Urbanek, David Martin Hemenway
  • Patent number: 7638798
    Abstract: A laminated wafer sensor structure includes a housing layer having pocket openings formed therein, a circuit layer having a sensor element and electronic components mounted for registration with the pocket openings in the housing layer, and a rigid back layer. The laminated structure is suitable for handling by conventional robotic wafer handling systems. The wafer sensor structure is adapted for electrical connection to a base station that is also adapted for connection to a host computer system to facilitate communication among the sensor structure, the base station and the host computer.
    Type: Grant
    Filed: May 10, 2007
    Date of Patent: December 29, 2009
    Assignee: Coherent, Inc.
    Inventors: Jim Schloss, Michele Winz, Sam Mallicoat, Wolfram Urbanek, Guang Li, Larry Potter, Kevin Shea
  • Patent number: 7393705
    Abstract: A method for fabricating an LED that radiates white spectrum light. A phosphor that radiates a white spectrum after excitation in the blue or UV spectrum is uniformly deposited onto a GaN epitaxial wafer prior to die separation and packaging. This allows wafer-level processing and probing of white LEDs and produces true white LED chips.
    Type: Grant
    Filed: February 16, 2006
    Date of Patent: July 1, 2008
    Assignee: Allegis Technologies, Inc.
    Inventor: Wolfram Urbanek
  • Publication number: 20080048285
    Abstract: A laminated wafer sensor structure includes a housing layer having pocket openings formed therein, a circuit layer having a sensor element and electronic components mounted for registration with the pocket openings in the housing layer, and a rigid back layer. The laminated structure is suitable for handling by conventional robotic wafer handling systems. The wafer sensor structure is adapted for electrical connection to a base station that is also adapted for connection to a host computer system to facilitate communication among the sensor structure, the base station and the host computer.
    Type: Application
    Filed: May 10, 2007
    Publication date: February 28, 2008
    Inventors: Jim Schloss, Michele Winz, Sam Mallicoat, Wolfram Urbanek, Guang Li, Larry Potter, Kevin Shea
  • Patent number: 7015117
    Abstract: A method for improving thermal dissipation in large gallium nitride light emitting diodes includes replacing sapphire with a better thermal conductor resulting in more efficient removal of thermal energy. A method for achieving a reliable and strong temporary bond between a GaN epitaxial layer and a support wafer. A method for transferring an epitaxial film from a growth substrate to a secondary substrate. An excimer laser initiates film delamination from the growth substrate. The laser beam is shaped by a shadow mask and aligned to an existing pattern in the growth substrate. A method for fabricating a LED that radiates white spectrum light. A phosphor that radiates a white spectrum after excitation in the blue or UV spectrum onto the GaN epitaxial wafer prior to die separation and packaging. A method for depositing a metal substrate onto a GaN epitaxy layer.
    Type: Grant
    Filed: July 14, 2004
    Date of Patent: March 21, 2006
    Assignee: Allegis Technologies, Inc.
    Inventor: Wolfram Urbanek
  • Patent number: 7012012
    Abstract: Thinning and dicing substrates using inductively coupled plasma reactive ion etching (ICP RIE). When dicing, a hard photo-resist pattern or metal mask pattern that defines scribe lines is formed on a sapphire substrate or on a semiconductor epitaxial layer, beneficially by lithographic techniques. Then, the substrate is etched along the scribe lines to form etched channels. An etching gas comprised of BCl3 and/or BCl3/Cl2 gas is used (optionally, Ar can be added). Stress lines are then produced through the substrate along the etched channels. The substrate is then diced along the stress lines. When thinning, a surface of a substrate is subjected to inductively coupled plasma reactive ion etching (ICP RIE) using BCl3 and/or BCl3/Cl2 gas, possibly with some Ar. ICP RIE is particularly useful when working sapphire and other hard substrates.
    Type: Grant
    Filed: August 30, 2004
    Date of Patent: March 14, 2006
    Assignee: LG Electronics Inc.
    Inventors: Geun-young Yeom, Myung cheol Yoo, Wolfram Urbanek, Youn-joon Sung, Chang-hyun Jeong, Kyong-nam Kim, Dong-woo Kim
  • Publication number: 20050042845
    Abstract: A method for improving thermal dissipation in large gallium nitride light emitting diodes includes replacing sapphire with a better thermal conductor resulting in more efficient removal of thermal energy. A method for achieving a reliable and strong temporary bond between a GaN epitaxial layer and a support wafer. A method for transferring an epitaxial film from a growth substrate to a secondary substrate. An excimer laser initiates film delamination from the growth substrate. The laser beam is shaped by a shadow mask and aligned to an existing pattern in the growth substrate. A method for fabricating a LED that radiates white spectrum light. A phosphor that radiates a white spectrum after excitation in the blue or UV spectrum onto the GaN epitaxial wafer prior to die separation and packaging. A method for depositing a metal substrate onto a GaN epitaxy layer.
    Type: Application
    Filed: July 14, 2004
    Publication date: February 24, 2005
    Inventor: Wolfram Urbanek
  • Publication number: 20050026396
    Abstract: Thinning and dicing substrates using inductively coupled plasma reactive ion etching (ICP RIE). When dicing, a hard photo-resist pattern or metal mask pattern that defines scribe lines is formed on a sapphire substrate or on a semiconductor epitaxial layer, beneficially by lithographic techniques. Then, the substrate is etched along the scribe lines to form etched channels. An etching gas comprised of BCl3 and/or BCl3/Cl2 gas is used (optionally, Ar can be added). Stress lines are then produced through the substrate along the etched channels. The substrate is then diced along the stress lines. When thinning, a surface of a substrate is subjected to inductively coupled plasma reactive ion etching (ICP RIE) using BCl3 and/or BCl3/Cl2 gas, possibly with some Ar. ICP RIE is particularly useful when working sapphire and other hard substrates.
    Type: Application
    Filed: August 30, 2004
    Publication date: February 3, 2005
    Inventors: Geun-young Yeom, Myung Yoo, Wolfram Urbanek, Youn-joon Sung, Chang-hyun Jeong, Kyoung-nam Kim, Dong-woo Kim
  • Patent number: 6818532
    Abstract: Thinning and dicing substrates using inductively coupled plasma reactive ion etching (ICP RIE). When dicing, a hard photo-resist pattern or metal mask pattern that defines scribe lines is formed on a sapphire substrate or on a semiconductor epitaxial layer, beneficially by lithographic techniques. Then, the substrate is etched along the scribe lines to form etched channels. An etching gas comprised of BCl3 and/or BCl3/Cl2 gas is used (optionally, Ar can be added). Stress lines are then produced through the substrate along the etched channels. The substrate is then diced along the stress lines. When thinning, a surface of a substrate is subjected to inductively coupled plasma reactive ion etching (ICP RIE) using BCl3 and/or BCl3/Cl2 gas, possibly with some Ar. ICP RIE is particularly useful when working sapphire and other hard substrates.
    Type: Grant
    Filed: April 9, 2002
    Date of Patent: November 16, 2004
    Assignee: Oriol, Inc.
    Inventors: Geun-young Yeom, Myung cheol Yoo, Wolfram Urbanek, Youn-joon Sung, Chang-hyun Jeong, Kyong-nam Kim, Dong-woo Kim
  • Publication number: 20030190770
    Abstract: Thinning and dicing substrates using inductively coupled plasma reactive ion etching (ICP RIE). When dicing, a hard photo-resist pattern or metal mask pattern that defines scribe lines is formed on a sapphire substrate or on a semiconductor epitaxial layer, beneficially by lithographic techniques. Then, the substrate is etched along the scribe lines to form etched channels. An etching gas comprised of BCl3 and/or BCl3/Cl2 gas is used (optionally, Ar can be added). Stress lines are then produced through the substrate along the etched channels. The substrate is then diced along the stress lines. When thinning, a surface of a substrate is subjected to inductively coupled plasma reactive ion etching (ICP RIE) using BCl3 and/or BCl3/Cl2 gas, possibly with some Ar. ICP RIE is particularly useful when working sapphire and other hard substrates.
    Type: Application
    Filed: April 9, 2002
    Publication date: October 9, 2003
    Applicant: Oriol, Inc.
    Inventors: Geun-young Yeom, Myung cheol Yoo, Wolfram Urbanek, Youn-joon Sung, Chang-hyun Jeong, Kyong-nam Kim, Dong-woo Kim