Patents by Inventor Won-Gun Koh

Won-Gun Koh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230400415
    Abstract: Provided is a self-healable hydrogel composite including a polyacrylic acid-polyvinyl alcohol-borax (PAA-PVA-borax) fiber gel onto which transition metal ions are adsorbed. The present invention can effectively seal spaces where there is a risk of chemical leakage and visually detect the presence or absence of leakage utilizing the elongation and self-healing properties of polyvinyl alcohol and borax hydrogels.
    Type: Application
    Filed: April 4, 2023
    Publication date: December 14, 2023
    Inventors: Won Gun KOH, Jeong Woo HAM, Jin Woo OH, Kyoung A. LIM
  • Publication number: 20230200974
    Abstract: The present invention relates to an artificial bladder system having a double space divided by a partition wall and a wireless, non-powered urine fullness sensor using an RFID technology, which provides an artificial bladder system comprising: an outer wall that forms the outer shape of the artificial bladder, is inserted into the body, and has an inner space; a partition wall, wherein both ends are fixed to the inside of the outer wall, the inner space of the outer wall is divided into a double space of a urine reservoir and a working fluid space, and it is deformable according to amounts of the urine and the working fluid; and a urine fullness sensor installed in the working fluid space and sensing a urine fullness degree based on the deformation of the partition wall.
    Type: Application
    Filed: December 28, 2022
    Publication date: June 29, 2023
    Applicants: Yonsei University Industry Foundation (Yonsei UIF), The Catholic University of Korea Industry-Academic Cooperation Foundation, Industry Academic Cooperation Foundation of Yeungnam University, Chung Ang University Industry Academic Cooperation Foundation
    Inventors: Jong Baeg KIM, U Syn HA, Jin Ho KIM, Jung Wook CHOI, Won Gun KOH, Gyu Jun CHOI, Min Hyeong KIM, Won Keun PARK, Jeong Hyeop SON
  • Patent number: 11510772
    Abstract: Provided is an artificial bladder including: a main body which includes an inlet port, an outlet port, and a predetermined reservoir portion configured to store urine between the inlet port and the outlet port and is formed of a biocompatible polymer that is expandable so that a volume of the reservoir portion changes according to the amount of urine; a sensor which is attached to an outer wall of the main body, has a surface having a wrinkled structure, and is provided so that, when the volume of the reservoir portion increases, the wrinkled structure stretches out and resistance of the sensor changes; and an actuator which is provided at the outlet port and is configured to discharge the urine according a result detected by the sensor.
    Type: Grant
    Filed: January 26, 2018
    Date of Patent: November 29, 2022
    Assignees: THE CATHOLIC UNIVERSITY OF KOREA INDUSTRY-ACADEMIC COOPERATION FOUNDATION, UNIVERSITY-INDUSTRY FOUNDATION, YONSEI UNIVERSITY, RESEARCH COOPERATION FOUNDATION OF YEUNGNAM UNIVERSITY
    Inventors: U-Syn Ha, Jongbaeg Kim, Won Gun Koh, Jin Ho Kim
  • Publication number: 20210353402
    Abstract: An artificial bladder is provided, including: a main body which includes an inlet port, an outlet port, an inner wall that forms a first reservoir portion configured to store urine between the inlet port and the outlet port and that is expandable and contractible. An outer wall forms a second reservoir portion configured to surround at least a partial region of the inner wall. A sensor is attached to the inner wall, has a surface having a wrinkled structure, and is provided so that, when the volume of the first reservoir portion increases, the wrinkled structure stretches out and resistance of the sensor changes. A control unit is provided to discharge the urine in the first reservoir portion through the outlet port according to a result detected by the sensor.
    Type: Application
    Filed: July 25, 2019
    Publication date: November 18, 2021
    Inventors: U-Syn HA, Jongbaeg KIM, Won Gun KOH, Jin Ho KIM
  • Publication number: 20190388212
    Abstract: Provided is an artificial bladder including: a main body which includes an inlet port, an outlet port, and a predetermined reservoir portion configured to store urine between the inlet port and the outlet port and is formed of a biocompatible polymer that is expandable so that a volume of the reservoir portion changes according to the amount of urine; a sensor which is attached to an outer wall of the main body, has a surface having a wrinkled structure, and is provided so that, when the volume of the reservoir portion increases, the wrinkled structure stretches out and resistance of the sensor changes; and an actuator which is provided at the outlet port and is configured to discharge the urine according a result detected by the sensor.
    Type: Application
    Filed: January 26, 2018
    Publication date: December 26, 2019
    Inventors: U-Syn HA, Jongbaeg KIM, Won Gun KOH, Jin Ho KIM
  • Publication number: 20110182968
    Abstract: The present invention provides materials that have high glucose and oxygen permeability, strength, water content, and resistance to protein adsorption. The materials include an interpenetrating polymer network (IPN) hydrogel that is coated with biomolecules. The IPN hydrogels include two interpenetrating polymer networks. The first polymer network is based on a hydrophilic telechelic macromonomer. The second polymer network is based on a hydrophilic monomer. The hydrophilic monomer is polymerized and cross-linked to form the second polymer network in the presence of the first polymer network. In a preferred embodiment, the hydrophilic telechelic macromonomer is PEG-diacrylamide, PEG-diacrylate or PEG-dimethacrylate and the hydrophilic monomer is an acrylic-based monomer. Any biomolecules may be linked to the IPN hydrogels, but are preferably biomolecules that support the growth of cornea-derived cells. The material is designed to serve as a corneal prosthesis.
    Type: Application
    Filed: December 20, 2010
    Publication date: July 28, 2011
    Inventors: David Myung, Christopher N. Ta, Curtis W. Frank, Won-Gun Koh, Jaan Noolandi, Laura Hartmann
  • Publication number: 20110184513
    Abstract: A material that can be applied as implants designed to artificially replace or augment the cornea, such as an artificial cornea, corneal onlay, or corneal inlay (intrastromal lens) is provided. The artificial corneal implant has a double network hydrogel with a first network interpenetrated with a second network. The first network and the second network are based on biocompatible polymers. At least one of the network polymers is based on a hydrophilic polymer. The artificial cornea or implant has epithelialization promoting biomolecules that are covalently linked to the surface of the double network hydrogel using an azide-active-ester chemical linker. Corneal epithelial cells or cornea-derived cells are adhered to the biomolecules. The double network has a physiologic diffusion coefficient to allow passage of nutrients to the adhered cells.
    Type: Application
    Filed: December 20, 2010
    Publication date: July 28, 2011
    Inventors: David Myung, Jaan Noolandi, Alan J. Smith, Curtis W. Frank, Christopher N. Ta, Yin Hu, Won-Gun Koh, Michael R. Carrasco, Laura Hartmann
  • Patent number: 7909867
    Abstract: The present invention provides materials that have high glucose and oxygen permeability, strength, water content, and resistance to protein adsorption. The materials include an interpenetrating polymer network (IPN) hydrogel that is coated with biomolecules. The IPN hydrogels include two interpenetrating polymer networks. The first polymer network is based on a hydrophilic telechelic macromonomer. The second polymer network is based on a hydrophilic monomer. The hydrophilic monomer is polymerized and cross-linked to form the second polymer network in the presence of the first polymer network. In a preferred embodiment, the hydrophilic telechelic macromonomer is PEG-diacrylate or PEG-dimethacrylate and the hydrophilic monomer is an acrylic-based monomer. Any biomolecules may be linked to the IPN hydrogels, but are preferably biomolecules that support the growth of cornea-derived cells. The material is designed to serve as a corneal prosthesis.
    Type: Grant
    Filed: December 13, 2006
    Date of Patent: March 22, 2011
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: David Myung, Christopher Ta, Curtis W. Frank, Won-Gun Koh, Jaan Noolandi
  • Patent number: 7857849
    Abstract: A material that can be applied as implants designed to artificially replace or augment the cornea, such as an artificial cornea, corneal onlay, or corneal inlay (intrastromal lens) is provided. The artificial corneal implant has a double network hydrogel with a first network interpenetrated with a second network. The first network and the second network are based on biocompatible polymers. At least one of the network polymers is based on a hydrophilic polymer. The artificial cornea or implant has epithelialization promoting biomolecules that are covalently linked to the surface of the double network hydrogel using an azide-active-ester chemical linker. Corneal epithelial cells or cornea-derived cells are adhered to the biomolecules. The double network has a physiologic diffusion coefficient to allow passage of nutrients to the adhered cells.
    Type: Grant
    Filed: October 4, 2005
    Date of Patent: December 28, 2010
    Assignees: The Board of Trustees of the Leland Stanford Junior Iniversity, Santa Clara University
    Inventors: David Myung, Jaan Noolandi, Alan J. Smith, Curtis W. Frank, Christopher Ta, Yin Hu, Won-Gun Koh, Michael R. Carrasco
  • Publication number: 20070233240
    Abstract: The present invention provides a hydrogel-based intraocular lens (IOL) implant that can covalently attach to a lens capsule on implantation into an eye. The inventive IOL has a high refractive index, high elasticity, and is of a similar size to a naturally occurring lens. In addition, the IOL can be implanted in a smaller, dehydrated state, allowing the IOL to be placed in the lens capsule with a small incision (up to about 1/10 the volume of the IOL). Exposure to fluid can then initiate rapid swelling of the dried polymer to the shape and dimensions of a natural lens, with full occupation of the lens capsule. Upon equilibrium swelling, the IOL can then make contact with the inner aspect of the lens capsule and covalently bind to it. By this attachment process, the IOL may accommodate in a manner identical to that of the natural lens.
    Type: Application
    Filed: March 16, 2007
    Publication date: October 4, 2007
    Inventors: Curtis Frank, Christopher Ta, David Myung, Jaan Noolandi, Michael Carrasco, Won-Gun Koh
  • Publication number: 20070179605
    Abstract: The present invention provides materials that have high glucose and oxygen permeability, strength, water content, and resistance to protein adsorption. The materials include an interpenetrating polymer network (IPN) hydrogel that is coated with biomolecules. The IPN hydrogels include two interpenetrating polymer networks. The first polymer network is based on a hydrophilic telechelic macromonomer. The second polymer network is based on a hydrophilic monomer. The hydrophilic monomer is polymerized and cross-linked to form the second polymer network in the presence of the first polymer network. In a preferred embodiment, the hydrophilic telechelic macromonomer is PEG-diacrylate or PEG-dimethacrylate and the hydrophilic monomer is an acrylic-based monomer. Any biomolecules may be linked to the IPN hydrogels, but are preferably biomolecules that support the growth of cornea-derived cells. The material is designed to serve as a corneal prosthesis.
    Type: Application
    Filed: December 13, 2006
    Publication date: August 2, 2007
    Inventors: David Myung, Christopher Ta, Curtis Frank, Won-Gun Koh, Jaan Noolandi
  • Publication number: 20060287721
    Abstract: The present invention provides an artificial corneal implant having an optically clear central core and a porous, hydrophilic, biocompatible skirt peripheral to the central core. In one embodiment, the central core is made of an interpenetrating double network hydrogel and the skirt is made of poly(2-hydroxyethyl acrylate) (PHEA). In another embodiment, both the central core and the skirt are made of interpenetrating double network hydrogels. The artificial corneal implant may also have an interdiffusion zone in which the skirt component is interpenetrated with the core component, or vice versa. In a preferred embodiment, biomolecules are linked to the skirt, central core or both. These biomolecules may be any type of biomolecule, but are preferably biomolecules that support epithelial and/or fibroblast cell survival and growth. Preferably, the biomolecules are linked in a spatially selective manner. The present invention also provides a method of making an artificial corneal implant using photolithography.
    Type: Application
    Filed: April 20, 2006
    Publication date: December 21, 2006
    Inventors: David Myung, Christopher Ta, Nabeel Farooqui, Curtis Frank, Won-Gun Koh, Jungmin Ko, Jaan Noolandi, Michael Carrasco
  • Publication number: 20060083773
    Abstract: A material that can be applied as implants designed to artificially replace or augment the cornea, such as an artificial cornea, corneal onlay, or corneal inlay (intrastromal lens) is provided. The artificial corneal implant has a double network hydrogel with a first network interpenetrated with a second network. The first network and the second network are based on biocompatible polymers. At least one of the network polymers is based on a hydrophilic polymer. The artificial cornea or implant has epithelialization promoting biomolecules that are covalently linked to the surface of the double network hydrogel using an azide-active-ester chemical linker. Corneal epithelial cells or cornea-derived cells are adhered to the biomolecules. The double network has a physiologic diffusion coefficient to allow passage of nutrients to the adhered cells.
    Type: Application
    Filed: October 4, 2005
    Publication date: April 20, 2006
    Inventors: David Myung, Jaan Noolandi, Alan Smith, Curtis Frank, Christopher Ta, Yin Hu, Won-Gun Koh, Michael Carrasco