Patents by Inventor Won nam Kang

Won nam Kang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230178269
    Abstract: Disclosed is a method for producing a high-entropy alloy superconductor bulk materials and wire materials, the method including a first step of mixing 4 to 10 types of metals selected from a group consisting of niobium (Nb), tantalum (Ta), titanium (Ti), hafnium (Hf), zirconium (Zr), tungsten (W), molybdenum (Mo), chromium (Cr), vanadium (V), and rhenium (Re) with each other to prepare a mixture and then milling the mixture to prepare mixed metal powders; and a second step of sintering the mixed metal powders prepared in the first step.
    Type: Application
    Filed: December 2, 2022
    Publication date: June 8, 2023
    Applicants: RESEARCH & BUSINESS FOUNDATION SUNGKYUNKWAN UNIVERSITY, University-Industry Cooperation Group of Kyung Hee University
    Inventors: Jong-Soo RHYEE, Jin Hee KIM, Tuson PARK, Soon-Gil JUNG, Yoonseok HAN, Won Nam KANG, Woo Seok CHOI
  • Patent number: 7189425
    Abstract: A superconducting magnesium diboride (MgB2) thin film having c-axial orientation and a method and apparatus for fabricating the same are provided. The fabrication method includes forming a boron thin film on a substrate and thermally processing the substrate on which the boron thin film is formed along with a magnesium source and cooling the resulting structure. The superconducting magnesium diboride thin film can be used in a variety of electronic devices employing superconducting thin films, such as precision medical diagnosis equipment using superconducting quantum interface devices (SQUIDs) capable of sensing weak magnetic fields, microwave communications equipment used for satellite communications, and Josephson devices. Computer systems with 100 times greater computing speed can be implemented with the superconducting magnesium diboride thin film.
    Type: Grant
    Filed: February 20, 2004
    Date of Patent: March 13, 2007
    Assignee: Pohang University of Science and Technology Foundation
    Inventors: Won nam Kang, Sung-ik Lee, Eun-mi Choi, Hyeong-jin Kim
  • Publication number: 20040186023
    Abstract: A superconducting magnesium diboride (MgB2) thin film having c-axial orientation and a method and apparatus for fabricating the same are provided. The fabrication method includes forming a boron thin film on a substrate and thermally processing the substrate on which the boron thin film is formed along with a magnesium source and cooling the resulting structure. The superconducting magnesium diboride thin film can be used in a variety of electronic devices employing superconducting thin films, such as precision medical diagnosis equipment using superconducting quantum interface devices (SQUIDs) capable of sensing weak magnetic fields, microwave communications equipment used for satellite communications, and Josephson devices. Computer systems with 100 times greater computing speed can be implemented with the superconducting magnesium diboride thin film.
    Type: Application
    Filed: February 20, 2004
    Publication date: September 23, 2004
    Inventors: Won nam Kang, Sung-ik Lee, Eun-mi Choi, Hyeong-jin Kim
  • Publication number: 20020132739
    Abstract: A superconducting magnesium diboride (MgB2) thin film having c-axial orientation and a method and apparatus for fabricating the same are provided. The fabrication method includes forming a boron thin film on a substrate and thermally processing the substrate on which the boron thin film is formed along with a magnesium source and cooling the resulting structure. The superconducting magnesium diboride thin film can be used in a variety of electronic devices employing superconducting thin films, such as precision medical diagnosis equipment using superconducting quantum interface devices (SQUIDs) capable of sensing weak magnetic fields, microwave communications equipment used for satellite communications, and Josephson devices. Computer systems with 100 times greater computing speed can be implemented with the superconducting magnesium diboride thin film.
    Type: Application
    Filed: March 15, 2002
    Publication date: September 19, 2002
    Inventors: Won nam Kang, Sung-Ik Lee, Eun-Mi Choi, Hyeong-Jin Kim