Patents by Inventor Wonwoo Kim
Wonwoo Kim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 10699949Abstract: A cobalt contact includes a dual silicide barrier layer. The barrier layer, which may be formed in situ, includes silicides of titanium and cobalt, and provides an effective adhesion layer between the cobalt contact and a conductive device region such as the source/drain junction of a semiconductor device, eliminating void formation during a metal anneal.Type: GrantFiled: April 9, 2019Date of Patent: June 30, 2020Assignee: GLOBALFOUNDRIES INC.Inventors: Keith Kwong Hon Wong, Wonwoo Kim, Praneet Adusumilli
-
Publication number: 20190237365Abstract: A cobalt contact includes a dual silicide barrier layer. The barrier layer, which may be formed in situ, includes silicides of titanium and cobalt, and provides an effective adhesion layer between the cobalt contact and a conductive device region such as the source/drain junction of a semiconductor device, eliminating void formation during a metal anneal.Type: ApplicationFiled: April 9, 2019Publication date: August 1, 2019Inventors: Keith Kwong Hon Wong, Wonwoo Kim, Praneet Adusumilli
-
Patent number: 10304735Abstract: A cobalt contact includes a dual silicide barrier layer. The barrier layer, which may be formed in situ, includes silicides of titanium and cobalt, and provides an effective adhesion layer between the cobalt contact and a conductive device region such as the source/drain junction of a semiconductor device, eliminating void formation during a metal anneal.Type: GrantFiled: June 22, 2017Date of Patent: May 28, 2019Assignee: GLOBALFOUNDRIES INC.Inventors: Keith Kwong Hon Wong, Wonwoo Kim, Praneet Adusumilli
-
Publication number: 20180374749Abstract: A cobalt contact includes a dual silicide barrier layer. The barrier layer, which may be formed in situ, includes silicides of titanium and cobalt, and provides an effective adhesion layer between the cobalt contact and a conductive device region such as the source/drain junction of a semiconductor device, eliminating void formation during a metal anneal.Type: ApplicationFiled: June 22, 2017Publication date: December 27, 2018Applicant: GLOBALFOUNDRIES INC.Inventors: Keith Kwong Hon WONG, Wonwoo KIM, Praneet ADUSUMILLI
-
Patent number: 9461111Abstract: A method of forming double and/or multiple numbers of fins of a FinFET device using a Si/SiGe selective epitaxial growth process and the resulting device are provided. Embodiments include forming a Si pillar in an oxide layer, the Si pillar having a bottom portion and a top portion; removing the top portion of the Si pillar; forming a SiGe pillar on the bottom portion of the Si pillar; reducing the SiGe pillar; forming a first set of Si fins on opposite sides of the reduced SiGe pillar; removing the SiGe pillar; replacing the Si fins with SiGe fins; reducing the SiGe fins; forming a second set of Si fins on opposite sides of the SiGe fins; and removing the SiGe fins.Type: GrantFiled: August 10, 2015Date of Patent: October 4, 2016Assignee: GLOBALFOUNDRIES INC.Inventors: InSoo Jung, Wonwoo Kim
-
Publication number: 20150349054Abstract: A method of forming double and/or multiple numbers of fins of a FinFET device using a Si/SiGe selective epitaxial growth process and the resulting device are provided. Embodiments include forming a Si pillar in an oxide layer, the Si pillar having a bottom portion and a top portion; removing the top portion of the Si pillar; forming a SiGe pillar on the bottom portion of the Si pillar; reducing the SiGe pillar; forming a first set of Si fins on opposite sides of the reduced SiGe pillar; removing the SiGe pillar; replacing the Si fins with SiGe fins; reducing the SiGe fins; forming a second set of Si fins on opposite sides of the SiGe fins; and removing the SiGe fins.Type: ApplicationFiled: August 10, 2015Publication date: December 3, 2015Inventors: InSoo JUNG, Wonwoo KIM
-
Patent number: 9142418Abstract: A method of forming double and/or multiple numbers of fins of a FinFET device using a Si/SiGe selective epitaxial growth process and the resulting device are provided. Embodiments include forming a Si pillar in an oxide layer, the Si pillar having a bottom portion and a top portion; removing the top portion of the Si pillar; forming a SiGe pillar on the bottom portion of the Si pillar; reducing the SiGe pillar; forming a first set of Si fins on opposite sides of the reduced SiGe pillar; removing the SiGe pillar; replacing the Si fins with SiGe fins; reducing the SiGe fins; forming a second set of Si fins on opposite sides of the SiGe fins; and removing the SiGe fins.Type: GrantFiled: May 19, 2014Date of Patent: September 22, 2015Assignee: GLOBALFOUNDRIES Inc.Inventors: InSoo Jung, Wonwoo Kim
-
Publication number: 20140327139Abstract: Contact structures and methods of fabricating contact structures of semiconductor devices are provided. One method includes, for instance: obtaining a substrate including a dielectric layer over the substrate; patterning the dielectric layer with at least one contact opening; providing a contact liner within the at least one contact opening in the dielectric layer; and filling the contact liner with a conductive material. In enhanced aspects, providing the contact liner within the at least one contact opening includes: depositing a first layer within the at least one contact opening in the dielectric layer; depositing a second layer over the first layer within the at least one contact opening; depositing at least one intermediate layer over the second layer within the at least one contact opening; and depositing a top layer over the at least one intermediate layer within the at least one contact opening.Type: ApplicationFiled: May 2, 2013Publication date: November 6, 2014Applicant: GLOBALFOUNDRIES Inc.Inventors: Jialin YU, Jilin XIA, Huang LIU, Wonwoo KIM, Changyong XIAO
-
Patent number: 8803254Abstract: One illustrative gate structure for an NFET device includes a gate insulation layer formed above a semiconducting substrate, a first metal layer comprised of titanium nitride (TiN) positioned above the gate insulation layer, a second metal layer comprised of tantalum nitride (TaN) positioned above the first metal layer, a third metal layer comprised of titanium aluminum (TiAl) positioned above the second metal layer, a fourth metal layer comprised of an aluminum-containing material positioned above the third metal layer, a fifth metal layer comprised of titanium positioned above the fourth metal layer, and a layer of aluminum positioned above the fifth metal layer.Type: GrantFiled: November 28, 2012Date of Patent: August 12, 2014Assignee: GLOBALFOUNDRIES Inc.Inventors: Jean-Baptiste Laloe, Huang Liu, Wonwoo Kim
-
Publication number: 20140145274Abstract: One illustrative gate structure for an NFET device includes a gate insulation layer formed above a semiconducting substrate, a first metal layer comprised of titanium nitride (TiN) positioned above the gate insulation layer, a second metal layer comprised of tantalum nitride (TaN) positioned above the first metal layer, a third metal layer comprised of titanium aluminum (TiAl) positioned above the second metal layer, a fourth metal layer comprised of an aluminum-containing material positioned above the third metal layer, a fifth metal layer comprised of titanium positioned above the fourth metal layer, and a layer of aluminum positioned above the fifth metal layer.Type: ApplicationFiled: November 28, 2012Publication date: May 29, 2014Applicant: GLOBALFOUNDRIES INC.Inventors: Jean-Baptiste Laloe, Huang Liu, Wonwoo Kim
-
Patent number: 8168543Abstract: Methods of forming a barrier layer are provided. In one embodiment, the method includes providing a substrate into a physical vapor deposition (PVD) chamber, supplying at least two reactive gases and an inert gas into the PVD chamber, sputtering a source material from a target disposed in the processing chamber in the presence of a plasma formed from the gas mixture, and forming a metal containing dielectric layer on the substrate from the source material. In another embodiment, the method includes providing a substrate into a PVD chamber, supplying a reactive gas the PVD chamber, sputtering a source material from a target disposed in the PVD chamber in the presence of a plasma formed from the reactive gas, forming a metal containing dielectric layer on the substrate from the source material, and post treating the metal containing layer in presence of species generated from a remote plasma chamber.Type: GrantFiled: September 18, 2009Date of Patent: May 1, 2012Assignee: Applied Materials, Inc.Inventors: Xinyu Fu, Keyvan Kashefizadeh, Ashish Subhash Bodke, Winsor Lam, Yiochiro Tanaka, Wonwoo Kim
-
Publication number: 20100006425Abstract: Methods of forming a barrier layer are provided. In one embodiment, the method includes providing a substrate into a physical vapor deposition (PVD) chamber, supplying at least two reactive gases and an inert gas into the PVD chamber, sputtering a source material from a target disposed in the processing chamber in the presence of a plasma formed from the gas mixture, and forming a metal containing dielectric layer on the substrate from the source material. In another embodiment, the method includes providing a substrate into a PVD chamber, supplying a reactive gas the PVD chamber, sputtering a source material from a target disposed in the PVD chamber in the presence of a plasma formed from the reactive gas, forming a metal containing dielectric layer on the substrate from the source material, and post treating the metal containing layer in presence of species generated from a remote plasma chamber.Type: ApplicationFiled: September 18, 2009Publication date: January 14, 2010Inventors: Xinyu Fu, Keyvan Kashefizadeh, Ashish Subhash Bodke, Winsor Lam, Yiochiro Tanaka, Wonwoo Kim
-
Patent number: 7618893Abstract: Methods of forming a barrier layer are provided. In one embodiment, the method includes providing a substrate into a physical valor deposition (PVD) chamber, supplying at least two reactive gases and an inert gas into the PVD chamber, sputtering a source material from a target disposed in the processing chamber in the presence of a plasma formed from the gas mixture, and forming a metal containing dielectric layer on the substrate from the source material. In another embodiment, the method includes providing a substrate into a PVD chamber, supplying a reactive gas the PVD chamber, sputtering a source material from a target disposed in the PVD chamber in the presence of a plasma formed from the reactive gas, forming a metal containing dielectric layer on the substrate from the source material, and post treating the metal containing layer in presence of species generated from a remote plasma chamber.Type: GrantFiled: March 4, 2008Date of Patent: November 17, 2009Assignee: Applied Materials, Inc.Inventors: Xinyu Fu, Keyvan Kashefizadeh, Ashish Subhash Bodke, Winsor Lam, Yiochiro Tanaka, Wonwoo Kim
-
Publication number: 20090227105Abstract: Methods of forming a barrier layer are provided. In one embodiment, the method includes providing a substrate into a physical vapor deposition (PVD) chamber, supplying at least two reactive gases and an inert gas into the PVD processing chamber, sputtering a source material from a target disposed in the processing chamber in the presence of a plasma formed from the gas mixture, and forming a metal containing dielectric layer on the substrate from the source material. In another embodiment, the method includes providing a substrate into a PVD chamber, supplying a reactive gas the PVD chamber, sputtering a source material from a target disposed in the PVD chamber in the presence of a plasma formed from the reactive gas, forming a metal containing dielectric layer on the substrate from the source material, and post treating the metal containing layer in presence of species generated from a remote plasma chamber.Type: ApplicationFiled: March 4, 2008Publication date: September 10, 2009Inventors: Xinyu Fu, Keyvan Kashefizadeh, Ashish Subhash Bodke, Winsor Lam, Yiochiro Tanaka, Wonwoo Kim