Patents by Inventor Woo-Kil Jang

Woo-Kil Jang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9708698
    Abstract: Provided is a wear resistant steel including 2.6 wt % to 4.5 wt % of manganese (Mn), carbon (C) satisfying (6-Mn)/50?C?(10-Mn)/50, 0.05 wt % to 1.0 wt % of silicon (Si), and iron (Fe) as well as other unavoidable impurities as a remainder, wherein a Brinell hardness of a surface portion is in a range of 360 to 440. The wear resistant steel further includes at least one component selected from the group consisting of 0.1 wt % or less (excluding 0 wt %) of niobium (Nb), 0.1 wt % or less (excluding 0 wt %) of vanadium (V), 0.1 wt % or less (excluding 0 wt %) of titanium (Ti), and 0.02 wt % or less (excluding 0 wt %) of boron (B) to complement the performance thereof. The wear resistant steel is characterized in that a microstructure includes martensite in an amount of 90% or more, and an average packet diameter of the martensite is 20 ?m or less.
    Type: Grant
    Filed: December 27, 2012
    Date of Patent: July 18, 2017
    Assignee: POSCO
    Inventors: Jong-Kyo Choi, Woo-Kil Jang, Young-Hwan Park, Hong-Ju Lee
  • Patent number: 9394579
    Abstract: The present invention provides steel containing manganese and nickel that is used as a structural material for a cryogenic storage container for liquefied natural gas (LNG) or the like, and a manufacturing method thereof; and more particularly, to steel having good cryogenic temperature toughness and also high strength by adding low-cost Mn instead of relatively expensive Ni at an optimized ratio, refining a microstructure through controlled rolling and cooling, and precipitating retained austenite through tempering, and a manufacturing method of the steel. To achieve the object, the technical feature of the present invention is a method of manufacturing high-strength steel with cryogenic temperature toughness. In the method, a steel slab is heated to a temperature within a range of 1,000 to 1,250° C., wherein the steel slab includes, by weight: 0.01-0.06% of carbon (C), 2.0-8.0% of manganese (Mn), 0.01-6.0% of nickel (Ni), 0.02-0.6% of molybdenum (Mo), 0.03-0.5% of silicon (Si), 0.003-0.
    Type: Grant
    Filed: November 21, 2011
    Date of Patent: July 19, 2016
    Assignee: POSCO
    Inventors: Kyung-Keun Um, Jong-Kyo Choi, Woo-Kil Jang, Hee-Goon Noh, Hyun-Kwan Cho
  • Publication number: 20140334967
    Abstract: Provided is a wear resistant steel including 2.6 wt % to 4.5 wt % of manganese (Mn), carbon (C) satisfying (6-Mn)/50?C?(10-Mn)/50, 0.05 wt % to 1.0 wt % of silicon (Si), and iron (Fe) as well as other unavoidable impurities as a remainder, wherein a Brinell hardness of a surface portion is in a range of 360 to 440. The wear resistant steel further includes at least one component selected from the group consisting of 0.1 wt % or less (excluding 0 wt %) of niobium (Nb), 0.1 wt % or less (excluding 0 wt %) of vanadium (V), 0.1 wt % or less (excluding 0 wt %) of titanium (Ti), and 0.02 wt % or less (excluding 0 wt %) of boron (B) to complement the performance thereof. The wear resistant steel is characterized in that a microstructure includes martensite in an amount of 90% or more, and an average packet diameter of the martensite is 20 ?m or less.
    Type: Application
    Filed: December 27, 2012
    Publication date: November 13, 2014
    Inventors: Jong-Kyo Choi, Woo-Kil Jang, Young-Hwan Park, Hong-Ju Lee
  • Publication number: 20130174941
    Abstract: The present invention provides steel containing manganese and nickel that is used as a structural material for a cryogenic storage container for liquefied natural gas (LNG) or the like, and a manufacturing method thereof; and more particularly, to steel having good cryogenic temperature toughness and also high strength by adding low-cost Mn instead of relatively expensive Ni at an optimized ratio, refining a microstructure through controlled rolling and cooling, and precipitating retained austenite through tempering, and a manufacturing method of the steel. To achieve the object, the technical feature of the present invention is a method of manufacturing high-strength steel with cryogenic temperature toughness. In the method, a steel slab is heated to a temperature within a range of 1,000 to 1,250° C., wherein the steel slab includes, by weight: 0.01-0.06% of carbon (C), 2.0-8.0% of manganese (Mn), 0.01-6.0% of nickel (Ni), 0.02-0.6% of molybdenum (Mo), 0.03-0.5% of silicon (Si), 0.003-0.
    Type: Application
    Filed: November 21, 2011
    Publication date: July 11, 2013
    Applicant: POSCO
    Inventors: Kyung-Keun Um, Jong-Kyo Choi, Woo-Kil Jang, Hee-Goon Noh, Hyun-Kwan Cho