Patents by Inventor Woohong Kim

Woohong Kim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9469806
    Abstract: Method of Making particles including a YAG core and a coating of sintering aid deposited thereon. The particles and agglomerates thereof maybe formed as a powder. The coated YAG-containing particles are well-suited to production of polycrystalline YAG-containing ceramics. The coated YAG-containing particles may be fabricated using a novel fabrication method which avoids the need for formation of a homogeneous powder mixture of YAG and sintering aid. The mixture may be sprayed into a drying column and dried to produce coated particles. Alternatively, the YAG particles and sintering aid or sintering aid precursor solution may be separately introduced to the drying column and dried to form coated YAG-containing particles.
    Type: Grant
    Filed: December 6, 2012
    Date of Patent: October 18, 2016
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Guillermo R. Villalobos, Jasbinder S. Sanghera, Woohong Kim, Shyam S. Bayya, Bryan Sadowski, Ishwar D. Aggarwal
  • Publication number: 20150315034
    Abstract: A nanoparticle containing monoclinic lutetium oxide. A method of: dispersing a lutetium salt solution in a stream of oxygen gas to form droplets, and combusting the droplets to form nanoparticles containing lutetium oxide. The combustion occurs at a temperature sufficient to form monoclinic lutetium oxide in the nanoparticles.
    Type: Application
    Filed: July 13, 2015
    Publication date: November 5, 2015
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Colin C. Baker, Woohong Kim, Guillermo R. Villalobos, Jasbinder S. Sanghera, Ishwar D. Aggarwal
  • Publication number: 20150295106
    Abstract: A composition of matter and method of forming copper indium gallium sulfide (CIGS), copper indium gallium selenide (CIGSe), or copper indium gallium telluride thin film via conversion of layer-by-layer (LbL) assembled Cu—In—Ga oxide (CIGO) nanoparticles and polyelectrolytes. CIGO nanoparticles are created via a flame-spray pyrolysis method using metal nitrate precursors, subsequently coated with polyallylamine (PAH), and dispersed in aqueous solution. Multilayer films are assembled by alternately dipping a substrate into a solution of either polydopamine (PDA) or polystyrenesulfonate (PSS) and then in the CIGO-PAH dispersion to fabricate films as thick as 1-2 microns. After LbL deposition, films are oxidized to remove polymer and sulfurized, selenized, or tellurinized to convert CIGO to CIGS, CIGSe, or copper indium gallium telluride.
    Type: Application
    Filed: April 9, 2015
    Publication date: October 15, 2015
    Inventors: Walter J. Dressick, Jasbinder S. Sanghera, Woohong Kim, Colin C. Baker, Jason D. Myers, Jesse A. Frantz
  • Patent number: 9099606
    Abstract: A method for synthesizing Cu(InxGa1-x)S2 and Cu(InxGa1-x)Se2 nanopowders using flame spray pyrolysis to form solar cell absorber materials. The flame spray product is the oxide nanoparticles of the absorber materials (copper indium gallium oxide). The oxide nanoparticles may be deposited directly onto glass substrates. The oxide nanoparticles are then sulfurdized or selenized with a post deposition anneal directly on the substrate to form the absorber layer for a solar cell device.
    Type: Grant
    Filed: February 27, 2014
    Date of Patent: August 4, 2015
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Colin C. Baker, Woohong Kim, Shyam S. Bayya, Jasbinder S. Sanghera, Ishwar D. Aggarwal
  • Publication number: 20150024532
    Abstract: An electrically conductive film suited to use as a transparent anode, a method of forming the film, and an electronic device comprising the film are disclosed. The device includes a conductive polymer electrode defining first and second surfaces and having an electrical conductivity gradient between the first and second surfaces. A second electrode is spaced from the second surface by at least one organic material layer, such as a light emitting layer.
    Type: Application
    Filed: May 6, 2014
    Publication date: January 22, 2015
    Inventors: Woohong Kim, Gary P. Kushto, Zakya H. Kafafi
  • Publication number: 20140356575
    Abstract: A composite made of alternating layers of elastic and plastic material provides desirable mechanical properties including high toughness. Each layer has a thickness of between 10 nanometers and 500 microns. Plastic materials that may be used include thermoplastic/thermoset elastomers, aluminum, alloys of aluminum, titanium, and alloys of titanium. Elastic materials include various thermoplastic or thermoset polymers, Al2O3, SiC, TiB2 and B4C.
    Type: Application
    Filed: June 3, 2014
    Publication date: December 4, 2014
    Applicant: The Government of the U.S.A., as represented by the Secretary of the Navy
    Inventors: Guillermo R. Villalobos, Shyam S. Bayya, Woohong Kim, Bryan Sadowski, Michael Hunt, Robert E. Miklos, Colin C. Baker, Jasbinder S. Sanghera
  • Publication number: 20140273336
    Abstract: A method for synthesizing Cu(InxGa1-x)S2 and Cu(InxGa1-x)Se2 nanopowders using flame spray pyrolysis to form solar cell absorber materials. The flame spray product is the oxide nanoparticles of the absorber materials (copper indium gallium oxide). The oxide nanoparticles may be deposited directly onto glass substrates. The oxide nanoparticles are then sulfurdized or selenized with a post deposition anneal directly on the substrate to form the absorber layer for a solar cell device.
    Type: Application
    Filed: February 27, 2014
    Publication date: September 18, 2014
    Inventors: Colin C. Baker, Woohong Kim, Shyam S. Bayya, Jasbinder S. Sanghera, Ishwar D. Aggarwal
  • Publication number: 20140220357
    Abstract: A p-type transparent conductive material can comprise a thin film of BCSF on a substrate where the film has a conductivity of at least 1 S/cm. The substrate may be a plastic substrate, such as a polyethersulfone, polyethylene terephthalate, polyimide, or some other suitable plastic or polymeric substrate.
    Type: Application
    Filed: April 4, 2014
    Publication date: August 7, 2014
    Inventors: Jesse A. Frantz, Jasbinder S. Sanghera, Vinh Q. Nguyen, Woohong Kim, Ishwar D. Aggarwal
  • Patent number: 8728284
    Abstract: A bulk barium copper sulfur fluoride (BCSF) material can be made by combining Cu2S, BaS and BaF2, heating the ampoule between 400 and 550° C. for at least two hours, and then heating the ampoule at a temperature between 550 and 950° C. for at least two hours. The BCSF material may be doped with potassium, rubidium, or sodium. Additionally, a p-type transparent conductive material can comprise a thin film of BCSF on a substrate where the film has a conductivity of at least 1 S/cm. The substrate may be a plastic substrate, such as a polyethersulfone, polyethylene terephthalate, polyimide, or some other suitable plastic or polymeric substrate.
    Type: Grant
    Filed: March 6, 2012
    Date of Patent: May 20, 2014
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Jesse A. Frantz, Jasbinder S. Sanghera, Vinh Q. Nguyen, Woohong Kim, Ishwar D. Aggarwal
  • Publication number: 20140098411
    Abstract: A method for making a rare earth doped polycrystalline ceramic laser gain medium by hot pressing a rare earth doped polycrystalline powder where the doping concentration is greater than 2% and up to 10% and where the grain size of the final ceramic is greater than 2 ?m. The polycrystalline powder can be Lu2O3, Y2O3, or Sc2O3, and the rare earth dopant can be Yb3+, Er3+, Tm3+, or Ho3+. Also disclosed is the related rare earth doped polycrystalline ceramic laser gain medium prepared by this method.
    Type: Application
    Filed: September 28, 2012
    Publication date: April 10, 2014
    Inventors: Woohong Kim, Guillermo R. Villalobos, Colin C. Baker, Jesse A. Frantz, Leslie Brandon Shaw, Bryan Sadowski, Jasbinder S. Sanghera, Ishwar D. Aggarwal
  • Patent number: 8646612
    Abstract: Monodisperse metal oxide nanopowders are prepared by treating a dispersion of crude metal oxide nanopowder with ultrasonication, allowing the dispersion to settle, and subjecting the remaining suspended portion to centrifugation to obtain a supernatant comprising metal oxide nanopowder.
    Type: Grant
    Filed: March 19, 2012
    Date of Patent: February 11, 2014
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Woohong Kim, Guillermo R. Villalobos, Jasbinder S. Sanghera, Ishwar D. Aggarwal
  • Publication number: 20140004261
    Abstract: Method of Making particles including a YAG core and a coating of sintering aid deposited thereon. The particles and agglomerates thereof maybe formed as a powder. The coated YAG-containing particles are well-suited to production of polycrystalline YAG-containing ceramics. The coated YAG-containing particles may be fabricated using a novel fabrication method which avoids the need for formation of a homogeneous powder mixture of YAG and sintering aid. The mixture may be sprayed into a drying column and dried to produce coated particles. Alternatively, the YAG particles and sintering aid or sintering aid precursor solution may be separately introduced to the drying column and dried to form coated YAG-containing particles.
    Type: Application
    Filed: December 6, 2012
    Publication date: January 2, 2014
    Inventors: Guillermo R. Villalobos, Jasbinder S. Sanghera, Woohong Kim, Shyam S. Bayya, Bryan Sadowski, Ishwar D. Aggarwal
  • Publication number: 20130243679
    Abstract: Monodisperse metal oxide nanopowders are prepared by treating a dispersion of crude metal oxide nanopowder with ultrasonication, allowing the dispersion to settle, and subjecting the remaining suspended portion to centrifugation to obtain a supernatant comprising metal oxide nanopowder.
    Type: Application
    Filed: March 19, 2012
    Publication date: September 19, 2013
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Woohong Kim, Guillermo R. Villalobos, Jasbinder S. Sanghera, Ishwar D. Aggarwal
  • Publication number: 20130160492
    Abstract: A method for making a smooth ceramic including loading ceramic powder to be densified into a hot press die, placing one or more spacers with a polished surface between a hot press punch and the ceramic powder, placing the die and punch into a hot press and hot pressing the ceramic powder, and removing a smooth ceramic shape that requires no subsequent polishing or processing and has a surface roughness of 5 nm RMS or better. The smooth ceramic shape may be transparent, and it may be spinel, magnesia, yttria, lutetia, scandia, YAG, any composites thereof, or any of their rare earth doped compounds. Also disclosed is the related smooth ceramic made by this process.
    Type: Application
    Filed: December 23, 2011
    Publication date: June 27, 2013
    Inventors: Guillermo R Villalobos, Bryan Sadowski, Michael Hunt, Robert E. Miklos, Shyam S. Bayya, Woohong Kim, Jasbinder S. Sanghera, Ishwar D. Aggarwal
  • Publication number: 20130059153
    Abstract: A nanoparticle containing monoclinic lutetium oxide. A method of: dispersing a lutetium salt solution in a stream of oxygen gas to form droplets, and combusting the droplets to form nanoparticles containing lutetium oxide. The combustion occurs at a temperature sufficient to form monoclinic lutetium oxide in the nanoparticles.
    Type: Application
    Filed: August 15, 2012
    Publication date: March 7, 2013
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Colin C. Baker, Woohong Kim, Guillermo R. Villalobos, Jasbinder S. Sanghera, Ishwar D. Aggarwal
  • Patent number: 8277878
    Abstract: A transparent polycrystalline ceramic having scattering and absorption loss less than 0.2/cm over a region comprising more than 95% of the originally densified shape and a process for fabricating the same by hot pressing. The ceramic can be any suitable ceramic such as yttria (Y2O3) or scandia (Sc2O3) and can have a doping level of from 0 to 20% and a grain size of greater than 30 ?m, although the grains can also be smaller than 30 ?m. Ceramic nanoparticles can be coated with a sintering aid to minimize direct contact of adjacent ceramic powder particles and then baked at high temperatures to remove impurities from the coated particles. The thus-coated particles can then be densified by hot pressing into the final ceramic product. The invention further provides a transparent polycrystalline ceramic solid-state laser material and a laser using the hot pressed polycrystalline ceramic.
    Type: Grant
    Filed: January 13, 2012
    Date of Patent: October 2, 2012
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Jasbinder S. Sanghera, Guillermo R. Villalobos, Woohong Kim, Shyam S. Bayya, Bryan Sadowski, Ishwar D. Aggarwal
  • Publication number: 20120168742
    Abstract: A bulk barium copper sulfur fluoride (BCSF) material can be made by combining Cu2S, BaS and BaF2, heating the ampoule between 400 and 550° C. for at least two hours, and then heating the ampoule at a temperature between 550 and 950° C. for at least two hours. The BCSF material may be doped with potassium, rubidium, or sodium. Additionally, a p-type transparent conductive material can comprise a thin film of BCSF on a substrate where the film has a conductivity of at least 1 S/cm. The substrate may be a plastic substrate, such as a polyethersulfone, polyethylene terephthalate, polyimide, or some other suitable plastic or polymeric substrate.
    Type: Application
    Filed: March 6, 2012
    Publication date: July 5, 2012
    Inventors: Jesse A. Frantz, Jasbinder S. Sanghera, Vinh Q. Nguyen, Woohong Kim, Ishwar D. Aggarwal
  • Publication number: 20120128873
    Abstract: A transparent polycrystalline ceramic having scattering and absorption loss less than 0.2/cm over a region comprising more than 95% of the originally densified shape and a process for fabricating the same by hot pressing. The ceramic can be any suitable ceramic such as yttria (Y2O3) or scandia (Sc2O3) and can have a doping level of from 0 to 20% and a grain size of greater than 30 ?m, although the grains can also be smaller than 30 ?m. Ceramic nanoparticles can be coated with a sintering aid to minimize direct contact of adjacent ceramic powder particles and then baked at high temperatures to remove impurities from the coated particles. The thus-coated particles can then be densified by hot pressing into the final ceramic product. The invention further provides a transparent polycrystalline ceramic solid-state laser material and a laser using the hot pressed polycrystalline ceramic.
    Type: Application
    Filed: January 13, 2012
    Publication date: May 24, 2012
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Jasbinder S. Sanghera, Guillermo R. Villalobos, Woohong Kim, Shyam S. Bayya, Bryan Sadowski, Ishwar D. Aggarwal
  • Publication number: 20120119147
    Abstract: A transparent polycrystalline ceramic having scattering and absorption loss less than 0.2/cm over a region comprising more than 95% of the originally densified shape and a process for fabricating the same by hot pressing. The ceramic can be any suitable ceramic such as yttria (Y2O3) or scandia (Sc2O3) and can have a doping level of from 0 to 20% and a grain size of greater than 30 although the grains can also be smaller than 30 ?m. Ceramic nanoparticles can be coated with a sintering aid to minimize direct contact of adjacent ceramic powder particles and then baked at high temperatures to remove impurities from the coated particles. The thus-coated particles can then be densified by hot pressing into the final ceramic product. The invention further provides a transparent polycrystalline ceramic solid-state laser material and a laser using the hot pressed polycrystalline ceramic.
    Type: Application
    Filed: January 13, 2012
    Publication date: May 17, 2012
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Jasbinder S. Sanghera, Guillermo R. Villalobos, Woohong Kim, Shyam S. Bayya, Bryan Sadowski, Jesse A. Frantz, Leslie Brandon Shaw, Ishwar D. Aggarwal
  • Publication number: 20120119146
    Abstract: A transparent polycrystalline ceramic having scattering and absorption loss less than 0.2/cm over a region comprising more than 95% of the originally densified shape and a process for fabricating the same by hot pressing. The ceramic can be any suitable ceramic such as yttria (Y2O3) or scandia (Sc2O3) and can have a doping level of from 0 to 20% and a grain size of greater than 30 ?m, although the grains can also be smaller than 30 ?m. Ceramic nanoparticles can be coated with a sintering aid to minimize direct contact of adjacent ceramic powder particles and then baked at high temperatures to remove impurities from the coated particles. The thus-coated particles can then be densified by hot pressing into the final ceramic product. The invention further provides a transparent polycrystalline ceramic solid-state laser material and a laser using the hot pressed polycrystalline ceramic.
    Type: Application
    Filed: January 13, 2012
    Publication date: May 17, 2012
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Jasbinder S. Sanghera, Guillermo R. Villalobos, Woohong Kim, Shyam S. Bayya, Bryan Sadowski, Jesse A. Frantz, Leslie Brandon Shaw, Ishwar D. Aggarwal