Patents by Inventor Woraphat Dockchoorung

Woraphat Dockchoorung has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240036267
    Abstract: A method of terminating an optical fiber having an inner core with a fiber optic connector including a ferrule having a micro-bore and an end face with a mating location is disclosed. The method includes determining a bore bearing angle of a bore offset of the micro-bore in the ferrule; determining a core bearing angle of a core offset of the inner core in the optical fiber; orienting the ferrule and the optical fiber relative to each other to minimize the distance between the inner core and the mating location; heating the ferrule to an processing temperature above room temperature; and coupling the optical fiber to the micro-bore of the ferrule. The size of the micro-bores and optical fibers may be selected to maximize the number of interference fits in a population of ferrules and optical fibers while minimizing failed fittings between the ferrules and optical fibers in the populations.
    Type: Application
    Filed: October 13, 2023
    Publication date: February 1, 2024
    Inventors: Raisa Rose Boben, Woraphat Dockchoorung, Riley Saunders Freeland, Klaus Hartkorn, Mark Alan McDermott, Aislin Karina Sullivan, Pushkar Tandon
  • Patent number: 11822129
    Abstract: A method of terminating an optical fiber having an inner core with a fiber optic connector including a ferrule having a micro-bore and an end face with a mating location is disclosed. The method includes determining a bore bearing angle of a bore offset of the micro-bore in the ferrule; determining a core bearing angle of a core offset of the inner core in the optical fiber; orienting the ferrule and the optical fiber relative to each other to minimize the distance between the inner core and the mating location; heating the ferrule to an processing temperature above room temperature; and coupling the optical fiber to the micro-bore of the ferrule. The size of the micro-bores and optical fibers may be selected to maximize the number of interference fits in a population of ferrules and optical fibers while minimizing failed fittings between the ferrules and optical fibers in the populations.
    Type: Grant
    Filed: October 10, 2022
    Date of Patent: November 21, 2023
    Assignee: Corning Research & Development Corporation
    Inventors: Raisa Rose Boben, Woraphat Dockchoorung, Riley Saunders Freeland, Klaus Hartkorn, Mark Alan McDermott, Aislin Karina Sullivan, Pushkar Tandon
  • Patent number: 11467350
    Abstract: A method of terminating an optical fiber having an inner core with a fiber optic connector including a ferrule having a micro-bore and an end face with a mating location is disclosed. The method includes determining a bore bearing angle of a bore offset of the micro-bore in the ferrule; determining a core bearing angle of a core offset of the inner core in the optical fiber; orienting the ferrule and the optical fiber relative to each other to minimize the distance between the inner core and the mating location; heating the ferrule to an processing temperature above room temperature; and coupling the optical fiber to the micro-bore of the ferrule. The size of the micro-bores and optical fibers may be selected to maximize the number of interference fits in a population of ferrules and optical fibers while minimizing failed fittings between the ferrules and optical fibers in the populations.
    Type: Grant
    Filed: November 13, 2020
    Date of Patent: October 11, 2022
    Assignee: Corning Research & Development Corporation
    Inventors: Raisa Rose Boben, Woraphat Dockchoorung, Riley Saunders Freeland, Klaus Hartkorn, Mark Alan McDermott, Aislin Karina Sullivan, Pushkar Tandon
  • Patent number: 11280967
    Abstract: A method of terminating an optical fiber having an inner core with a fiber optic connector including a ferrule having a micro-bore and an end face with a mating location is disclosed. The method includes determining a bore bearing angle of a bore offset of the micro-bore in the ferrule; determining a core bearing angle of a core offset of the inner core in the optical fiber; orienting the ferrule and the optical fiber relative to each other to minimize the distance between the inner core and the mating location; heating the ferrule to an processing temperature above room temperature; and coupling the optical fiber to the micro-bore of the ferrule. The size of the micro-bores and optical fibers may be selected to maximize the number of interference fits in a population of ferrules and optical fibers while minimizing failed fittings between the ferrules and optical fibers in the populations.
    Type: Grant
    Filed: February 12, 2021
    Date of Patent: March 22, 2022
    Assignee: Corning Research & Development Corporation
    Inventors: Raisa Rose Boben, Woraphat Dockchoorung, Riley Saunders Freeland, Klaus Hartkorn, Mark Alan McDermott, Aislin Karina Sullivan, Pushkar Tandon
  • Publication number: 20210165172
    Abstract: A method of terminating an optical fiber having an inner core with a fiber optic connector including a ferrule having a micro-bore and an end face with a mating location is disclosed. The method includes determining a bore bearing angle of a bore offset of the micro-bore in the ferrule; determining a core bearing angle of a core offset of the inner core in the optical fiber; orienting the ferrule and the optical fiber relative to each other to minimize the distance between the inner core and the mating location; heating the ferrule to an processing temperature above room temperature; and coupling the optical fiber to the micro-bore of the ferrule. The size of the micro-bores and optical fibers may be selected to maximize the number of interference fits in a population of ferrules and optical fibers while minimizing failed fittings between the ferrules and optical fibers in the populations.
    Type: Application
    Filed: February 12, 2021
    Publication date: June 3, 2021
    Inventors: Raisa Rose Boben, Woraphat Dockchoorung, Riley Saunders Freeland, Klaus Hartkorn, Mark Alan McDermott, Aislin Karina Sullivan, Pushkar Tandon
  • Publication number: 20210165171
    Abstract: A method of terminating an optical fiber having an inner core with a fiber optic connector including a ferrule having a micro-bore and an end face with a mating location is disclosed. The method includes determining a bore bearing angle of a bore offset of the micro-bore in the ferrule; determining a core bearing angle of a core offset of the inner core in the optical fiber; orienting the ferrule and the optical fiber relative to each other to minimize the distance between the inner core and the mating location; heating the ferrule to an processing temperature above room temperature; and coupling the optical fiber to the micro-bore of the ferrule. The size of the micro-bores and optical fibers may be selected to maximize the number of interference fits in a population of ferrules and optical fibers while minimizing failed fittings between the ferrules and optical fibers in the populations.
    Type: Application
    Filed: November 13, 2020
    Publication date: June 3, 2021
    Inventors: Raisa Rose Boben, Woraphat Dockchoorung, Riley Saunders Freeland, Klaus Hartkorn, Mark Alan McDermott, Aislin Karina Sullivan, Pushkar Tandon
  • Patent number: 10788627
    Abstract: A fiber bulge (“bulge”) formed in an end of an optical fiber for positioning the optical fiber in a ferrule bore is disclosed. An energy source is controlled to direct focused energy to the end of the optical fiber extended from the front end face of the ferrule to expose and melt the end of the optical fiber into a bulge of desired geometry and size. The bulge comprises a cross-sectional region having an outer surface having a minimum outer diameter larger than the inner diameter of the ferrule bore. Thus, the optical fiber may be pulled back in the ferrule bore such that at least a portion of the outer surface of the interface region of the bulge interferes with and engages the front opening of the ferrule bore to position the fiber core within the ferrule bore.
    Type: Grant
    Filed: November 15, 2018
    Date of Patent: September 29, 2020
    Assignee: Corning Optical Communications LLC
    Inventors: Venkata Adiseshaiah Bhagavatula, Woraphat Dockchoorung, Riley Saunders Freeland, Klaus Hartkorn
  • Patent number: 10383521
    Abstract: A non-cylindrical hypotube is disclosed, such as for use in OCT and endoscopy. The hypotube is defined by a non-cylindrical, rotationally symmetric tube and has an interior, a proximal-end section with an outer diameter D1, a distal-end section with an outer diameter D3, and a middle section between the proximal-end and distal-end sections and having an outer diameter D2, wherein D2<D1, and D2<D3. The distal-end section is sized to accommodate the optical probe and includes an outer surface with an aperture that allows for optical communication therethrough.
    Type: Grant
    Filed: November 4, 2015
    Date of Patent: August 20, 2019
    Assignee: Corning Incorporated
    Inventors: Venkata Adiseshaiah Bhagavatula, Woraphat Dockchoorung, Klaus Hartkorn, Mark Alan McDermott, Stephen Quenton Smith
  • Publication number: 20190101708
    Abstract: A fiber bulge (“bulge”) formed in an end of an optical fiber for positioning the optical fiber in a ferrule bore is disclosed. An energy source is controlled to direct focused energy to the end of the optical fiber extended from the front end face of the ferrule to expose and melt the end of the optical fiber into a bulge of desired geometry and size. The bulge comprises a cross-sectional region having an outer surface having a minimum outer diameter larger than the inner diameter of the ferrule bore. Thus, the optical fiber may be pulled back in the ferrule bore such that at least a portion of the outer surface of the interface region of the bulge interferes with and engages the front opening of the ferrule bore to position the fiber core within the ferrule bore.
    Type: Application
    Filed: November 15, 2018
    Publication date: April 4, 2019
    Inventors: Venkata Adiseshaiah Bhagavatula, Woraphat Dockchoorung, Riley Saunders Freeland, Klaus Hartkorn
  • Patent number: 9885843
    Abstract: A fiber bulge (“bulge”) formed in an end of an optical fiber for positioning the optical fiber in a ferrule bore is disclosed. An energy source is controlled to direct focused energy to the end of the optical fiber extended from the front end face of the ferrule to expose and melt the end of the optical fiber into a bulge of desired geometry and size. The bulge comprises a cross-sectional region having an outer surface having a minimum outer diameter larger than the inner diameter of the ferrule bore. Thus, the optical fiber may be pulled back in the ferrule bore such that at least a portion of the outer surface of the interface region of the bulge interferes with and engages the front opening of the ferrule bore to position the fiber core within the ferrule bore.
    Type: Grant
    Filed: May 26, 2017
    Date of Patent: February 6, 2018
    Assignee: Corning Optical Communications LLC
    Inventors: Venkata Adiseshaiah Bhagavatula, Woraphat Dockchoorung, Riley Saunders Freeland, Klaus Hartkorn
  • Publication number: 20170343749
    Abstract: A fiber bulge (“bulge”) formed in an end of an optical fiber for positioning the optical fiber in a ferrule bore is disclosed. An energy source is controlled to direct focused energy to the end of the optical fiber extended from the front end face of the ferrule to expose and melt the end of the optical fiber into a bulge of desired geometry and size. The bulge comprises a cross-sectional region having an outer surface having a minimum outer diameter larger than the inner diameter of the ferrule bore. Thus, the optical fiber may be pulled back in the ferrule bore such that at least a portion of the outer surface of the interface region of the bulge interferes with and engages the front opening of the ferrule bore to position the fiber core within the ferrule bore.
    Type: Application
    Filed: May 26, 2017
    Publication date: November 30, 2017
    Inventors: Venkata Adiseshaiah Bhagavatula, Woraphat Dockchoorung, Riley Saunders Freeland, Klaus Hartkorn
  • Publication number: 20160120408
    Abstract: A non-cylindrical hypotube is disclosed, such as for use in OCT and endoscopy. The hypotube is defined by a non-cylindrical, rotationally symmetric tube and has an interior, a proximal-end section with an outer diameter D1, a distal-end section with an outer diameter D3, and a middle section between the proximal-end and distal-end sections and having an outer diameter D2, wherein D2<D1, and D2<D3. The distal-end section is sized to accommodate the optical probe and includes an outer surface with an aperture that allows for optical communication therethrough.
    Type: Application
    Filed: November 4, 2015
    Publication date: May 5, 2016
    Inventors: Venkata Adiseshaiah Bhagavatula, Woraphat Dockchoorung, Klaus Hartkorn, Mark Alan McDermott, Stephen Quenton Smith
  • Publication number: 20150025369
    Abstract: According to some embodiments a housing for the OCT comprises: (a) a tubular body with an inner diameter of less than 5 mm (for example less than 2 mm, and in some embodiments not greater than 1.5 mm), a first end, a second end; and a window formed in the tubular body closer to the second end than to the first end, displaced from the second end, and framed by a portion of the tubular body, wherein the window has a width w. According to some embodiments, 0.05 mm<w<8 mm.
    Type: Application
    Filed: June 24, 2014
    Publication date: January 22, 2015
    Inventors: Venkata Adiseshaiah Bhagavatula, John McKenna Brennan, Woraphat Dockchoorung, Klaus Hartkorn, Mark Alan McDermott, Amorn Runarom, Daniel Max Staloff
  • Publication number: 20130215924
    Abstract: According to one embodiment described herein, a method for assembling a multi-emitter laser pump package, includes providing a base substrate comprising a laser riser block. A chip-on-hybrid laser assembly is bonded to the laser riser block with a solder preform. A scalar module is bonded to the base substrate with an adhesive such that an output of the chip-on-hybrid laser assembly is optically coupled into an input of the scalar module. A sidewall ring is adhesively bonded to the base substrate with a non-hermetic adhesive, the sidewall ring comprising a fiber interconnect fitting and at least one electrical connector. A first end of a fiber interconnect is optically coupled to an output of the scalar module and a second end of the fiber interconnect is positioned in the fiber interconnect fitting of the sidewall ring.
    Type: Application
    Filed: February 13, 2013
    Publication date: August 22, 2013
    Inventors: John McKenna Brennan, Wanchai Chinpongpan, Woraphat Dockchoorung, Sanyapong Puthgul, Amorn Runarom