Patents by Inventor Wouter Harry Jacinth Rensen

Wouter Harry Jacinth Rensen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10791932
    Abstract: An optical detection method is provided, wherein a body part (5) comprising at least one joint is irradiated with light. Local attenuation of the light by the body part (5) is detected as attenuation measurements (2) at the position of the at least one joint and at the position of at least one other portion of the body part (5); and wherein blood flow to and/or from the body part (5) is temporarily at least partially blocked and thereafter enabled again (3). Distinct local attenuation measurements for the at least one joint and for at least one other portion of the body part (5) are performed for at least two of the times before (I), during (II), and after (III) the blocking of blood flow.
    Type: Grant
    Filed: May 20, 2009
    Date of Patent: October 6, 2020
    Assignee: Demcon Hemics B.V.
    Inventors: Wouter Harry Jacinth Rensen, Michael Cornelis Van Beek, Rik Harbers
  • Publication number: 20200305717
    Abstract: An optical detection method and device are provided, wherein a body part comprising at least one joint is irradiated with light. Local attenuation of the light by the body part is detected as attenuation measurements at the position of the at least one joint and at the position of at least one other portion of the body part; and wherein blood flow to and/or from the body part is temporarily at least partially blocked and thereafter enabled again. Distinct local attenuation measurements for the at least one joint and for at least one other portion of the body part are performed for at least two of the times before (I), during (II), and after (III) the blocking of blood flow.
    Type: Application
    Filed: June 17, 2020
    Publication date: October 1, 2020
    Inventors: Wouter Harry Jacinth Rensen, Michael Cornelis Van Beek, Rik Harbers
  • Patent number: 9915523
    Abstract: The invention relates to a system for monitoring a position of a distal end of a tube with respect to a blood vessel of a mammal. The system comprises a source for generating an outgoing beam of electromagnetic radiation having a predefined electromagnetic spectrum. The system furthermore comprises a guideway for guiding the outgoing beam to the distal end, and for guiding an incoming beam of electromagnetic radiation reflected by surroundings of the distal end in response to said outgoing beam to a measurement arrangement, which is arranged for measuring a parameter associated with an electromagnetic spectrum of the incoming beam. The system furthermore comprises a comparator arrangement for comparing said parameter with a reference parameter associated with a reference electromagnetic spectrum representing a predefined location of the distal end inside the mammal.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: March 13, 2018
    Assignee: Koninklijke Philips N.V.
    Inventors: Judith Margreet Rensen, Wouter Harry Jacinth Rensen
  • Patent number: 9901321
    Abstract: The present invention relates to a monitoring apparatus (101) for monitoring an ablation procedure. The monitoring apparatus (101) comprises an ultrasound signal providing unit for providing an ultrasound signal that depends on received echo series of an object (4) that is ablated. The monitoring apparatus (101) further comprises an ablation depth determination unit (103) for determining an ablation depth from the provided ultrasound signal. The ablation depth can be determined directly from the ultrasound signal and is an important parameter while performing an ablation procedure. For example, it can be used for determining the progress of ablation within the object (4) and for determining when the ablation has reached a desired progression.
    Type: Grant
    Filed: January 8, 2010
    Date of Patent: February 27, 2018
    Assignee: Koninklijke Philips N.V.
    Inventors: Erik Harks, Szabolcs Deladi, Jan Frederik Suijver, Ladislav Jankovic, Yan Shi, Wouter Harry Jacinth Rensen, Maya Barley, Nijs Cornelis Van Der Vaart
  • Patent number: 9895064
    Abstract: A system and method to determine a disease activity as a single value by way of optical measurements in order to facilitate an analysis of a current disease status and a future course of disease, thus assisting a doctor's diagnosis or decision on a therapy. A blood perfusion is varied in an area of interest, the area of interest is irradiated with light of at least two wavelengths, an intensity of light reflected and/or transmitted by the area of interest is detected, features are derived from detected intensity curves of at least two predetermined wavelengths under at least two different perfusion conditions, and the disease activity is determined using these features.
    Type: Grant
    Filed: November 25, 2011
    Date of Patent: February 20, 2018
    Assignee: Hemics B.V.
    Inventors: Wouter Harry Jacinth Rensen, Pieter Klaas De Bokx
  • Publication number: 20130310697
    Abstract: A system and method to determine a disease activity as a single value by way of optical measurements in order to facilitate an analysis of a current disease status and a future course of disease, thus assisting a doctor's diagnosis or decision on a therapy. A blood perfusion is varied in an area of interest, the area of interest is irradiated with light of at least two wavelengths, an intensity of light reflected and/or transmitted by the area of interest is detected, features are derived from detected intensity curves of at least two predetermined wavelengths under at least two different perfusion conditions, and the disease activity is determined using these features.
    Type: Application
    Filed: November 25, 2011
    Publication date: November 21, 2013
    Applicant: Hemics B.V.
    Inventors: Wouter Harry Jacinth Rensen, Pieter Klaas De Bokx
  • Publication number: 20130083331
    Abstract: The invention relates to a system (101) for monitoring a position of a distal end (102) of a tube (104) with respect to a blood vessel (106) of a mamma. The system comprises a source (110) for generating an outgoing beam (112) of electromagnetic radiation having a predefined electromagnetic spectrum. The system furthermore comprises a guideway (114) for guiding the outgoing beam to the distal end, and for guiding an incoming beam (116) of electromagnetic radiation reflected by surroundings of the distal end in response to said outgoing beam to a measurement arrangement (120) which is arranged for measuring a parameter (122) associated with an electromagnetic spectrum of the incoming beam. The system furthermore comprises a comparator arrangement (124) for comparing said parameter with a reference parameter (126) associated with a reference electromagnetic spectrum representing a predefined location of the distal end inside the mammal.
    Type: Application
    Filed: June 10, 2011
    Publication date: April 4, 2013
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Judith Margreet Rensen, Wouter Harry Jacinth Rensen
  • Patent number: 8406835
    Abstract: A spectroscopic system for determining a property of a fluid flowing through a volume of interest underneath the surface of the skin of a patient is described. The spectroscopic system comprises: a probe head having an objective for directing an excitation beam into the volume of interest and for collecting return radiation from the volume of interest; a base station having a spectroscopic analysis unit and a power supply; and a cable connecting the probe head and the base station for transmission of the return radiation from the probe head to the base station and for providing the probe head with power from the power supply of the base station.
    Type: Grant
    Filed: February 14, 2005
    Date of Patent: March 26, 2013
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Gerhardus Wilhelmus Lucassen, Wouter Harry Jacinth Rensen, Michael Cornelis Van Beek, Marjolein Van Der Voort, Bernardus Leonardus Gerardus Bakker
  • Publication number: 20120004547
    Abstract: The present invention relates to a monitoring apparatus (101) for monitoring an ablation procedure. The monitoring apparatus (101) comprises an ultrasound signal providing unit for providing an ultrasound signal that depends on received echo series of an object (4) that is ablated. The monitoring apparatus (101) further comprises an ablation depth determination unit (103) for determining an ablation depth from the provided ultrasound signal. The ablation depth can be determined directly from the ultrasound signal and is an important parameter while performing an ablation procedure. For example, it can be used for determining the progress of ablation within the object (4) and for determining when the ablation has reached a desired progression.
    Type: Application
    Filed: January 8, 2010
    Publication date: January 5, 2012
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Erik Harks, Szabolcs Deladi, Jan Frederik Suijver, Ladislav Jankovic, Yan Shi, Wouter Harry Jacinth Rensen, Maya Barley, Nijs Cornelis Van Der Vaart
  • Publication number: 20110201942
    Abstract: A device for optically examining the interior of a body part by transillumination is provided. The device comprises: an illumination unit (2) adapted for emitting polarized light (8) towards a body part (5) to be examined; and a detector unit (6) adapted for detecting light in transmission. A polarizer (10) is arranged in front of the detector unit (6).
    Type: Application
    Filed: October 21, 2009
    Publication date: August 18, 2011
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Marius Iosif Boamfa, Wouter Harry Jacinth Rensen
  • Patent number: 7924140
    Abstract: The invention relates to an identification method carried out as follows. A surface structure and an inner structure of a body member are measured (ST1-ST4, ST7) so as to obtain a surface-structure measurement result (FPM) and an inner-structure measurement result (BVPM), respectively. The surface-structure measurement result (FPM) is compared (ST5) with a surface-structure reference result (FPR) that distinguishes an individual from other individuals. The inner-structure measurement result (BVPM) is compared (ST8) with an inner-structure reference result (BVPR) that is associated with the same individual and that distinguishes the individual from other individuals. The body member may be, for example, a finger. In that case, the surface structure comprises a fingerprint and the inner structure comprises a blood-vessel pattern.
    Type: Grant
    Filed: October 20, 2005
    Date of Patent: April 12, 2011
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Robert Frans Maria Hendriks, Wouter Harry Jacinth Rensen, Antonius Hermanus Maria Akkermans
  • Publication number: 20110066034
    Abstract: An optical detection method is provided, wherein a body part (5) comprising at least one joint is irradiated with light. Local attenuation of the light by the body part (5) is detected as attenuation measurements (2) at the position of the at least one joint and at the position of at least one other portion of the body part (5); and wherein blood flow to and/or from the body part (5) is temporarily at least partially blocked and thereafter enabled again (3). Distinct local attenuation measurements for the at least one joint and for at least one other portion of the body part (5) are performed for at least two of the times before (I), during (II), and after (III) the blocking of blood flow.
    Type: Application
    Filed: May 20, 2009
    Publication date: March 17, 2011
    Inventors: Wouter Harry Jacinth Rensen, Michael Cornelis Van Beek, Rik Harbers
  • Patent number: 7817268
    Abstract: The present invention provides a spectroscopic system as well as a method of autonomous tuning of a spectroscopic system and a corresponding computer program product. By detecting the position of return radiation in a transverse plane of an aperture of a spectroscopic analysis unit, a control signal can be generated that allows to drive servo driven translation or tilting stages of optical components. In this way a transverse misalignment of a spectroscopic system can be effectively detected. Generally, a plurality of different detection schemes are realizable allowing for an autonomous tuning of the spectroscopic system and for autonomous elimination of misalignment of a spectroscopic system.
    Type: Grant
    Filed: August 24, 2005
    Date of Patent: October 19, 2010
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Bernardus Leonardus Gerardus Bakker, Michael Cornelis Van Beek, GĂ©rald Lucassen, Marjolein Van Der Voort, Wouter Harry Jacinth Rensen
  • Patent number: 7761129
    Abstract: A measurement head has an objective for imaging of a target area such as including a capillary vessel in the skin. The measurement head does not require a lateral shifting of the optical axis of the objective. Transverse relative movements between the objective and a capillary vessel in the skin are performed by mechanically shifting the skin with respect to the objective of the measurement head. Moreover, the measurement head is adapted to host one or more pressure sensors for measuring the contact pressure between the measurement head and the skin. Pressure information may be exploited in order to calibrate a spectroscopic analyzer, and/or to regulate the contact pressure within predefined margins specifying an optimum range of contact pressure for spectroscopic examination of capillary vessels.
    Type: Grant
    Filed: May 3, 2005
    Date of Patent: July 20, 2010
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Marjolein Van Der Voort, Bernardus Leonardus Bakker, Gerald Lucassen, Hendrikus Antonius Cornelus Maria Compen, Michael Cornelis Van Beek, Wouter Harry Jacinth Rensen
  • Publication number: 20100096551
    Abstract: The invention relates to a device and method for the measurement of the concentration of at least one substance in a turbid medium. The device comprises at least one radiation source (12) adapted to illuminate the turbid medium (17) on at least one irradiation area. The device further comprises at least one detector adapted to detect backscattered light from the turbid medium from at least one detection area and to generate detection signals representative of the backscattered light. The device is arranged to generate detection signals with respect to at least two different irradiation-detection distances. The irradiation-detection distances are defined as the respective distances between the irradiation areas and the detection areas.
    Type: Application
    Filed: December 20, 2007
    Publication date: April 22, 2010
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Wouter Harry Jacinth Rensen, Levinus Pieter Bakker
  • Publication number: 20100087739
    Abstract: An apparatus for optical body analysis is built with an illumination and detection head, and an optical coupler. The illumination and detection head comprises a light source for illuminating a body portion to analyze through the optical coupler and a detector for receiving light diffusely reflected by the body portion. The optical coupler is mechanically decoupled from the illumination and detection head and is adapted to be in contact with an outer surface of the body portion while the contact between the optical coupler and the body portion minimally affects physical properties of the body portion. The apparatus may further comprise a position unit adapted to adjust the position of the illumination and detection head relative to the optical coupler so that the detector receives through the optical coupler light generated by the light source and diffusely reflected by the body portion.
    Type: Application
    Filed: September 25, 2007
    Publication date: April 8, 2010
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Gerhardus Wilhelmus Lucassen, Wouter Harry Jacinth Rensen
  • Patent number: 7663748
    Abstract: An autofocus mechanism for a spectroscopic system determines a time varying optical property of a volume of interest. The mechanism measures the fluctuations of the optical property of the volume of interest for determining the position of the volume of interest. The spectroscopic system focuses an excitation beam into the determined volume of interest and collects return radiation emanating from the volume of interest for spectroscopic analysis. Preferably, inelastically scattered radiation of an excitation beam is separated from elastically scattered radiation for spectroscopic analysis. The elastically scattered radiation of the excitation beam is measured for fluctuations of the optical property of the volume of interest. A control loop maximizes the amplitude and/or intensity of the fluctuations and specifies the position of a volume of interest e.g. the center of a capillary vessel.
    Type: Grant
    Filed: June 7, 2005
    Date of Patent: February 16, 2010
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Michael Cornelis Van Beek, Gerald Lucassen, Marjolein Van Der Voort, Wouter Harry Jacinth Rensen, Durk Jolmer De Vries
  • Publication number: 20090326385
    Abstract: This application describes a medical device (230) for obtaining optical tissue properties of a target material. The medical device (230) comprises an elongated body (231) having a longitudinal axis (232) and an optical fiber being integrated within the elongated body (231). The optical fiber has a second fiber end (242, 242a, 242b), which is arranged at a side wall (233) of the elongated body (231) and which provides a lateral field of view with respect to the longitudinal axis (232). According to an embodiment many optical fibers are integrated each having an optical outlet (242, 242a, 242b) around the elongated body (231). Using the outlets (242, 242a, 242b) to do diffuse optical tomography and also use optical fibers to do an optical inspection, one can get information on the presence of tumors in a volume around the medical device (230) and a tissue characterization in the vicinity of the medical device (230). Thereby, an optical biopsy may be carried out, wherein no real tissue is removed.
    Type: Application
    Filed: November 29, 2007
    Publication date: December 31, 2009
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Bernardus Hendrikus Wilhelmus Hendriks, Stein Kuiper, Ruth Wilhelmine Ireen De Boer, Augustinus Laurentius Braun, Michael Cornelis Van Beek, Wouter Harry Jacinth Rensen
  • Publication number: 20090198113
    Abstract: Apparatus and method for an analyte determination in blood, relying on spectroscopic techniques, in which sample is illuminated with light having dedicated spectral characteristics. The first light source (20) is a broadband light source in the IR-range, the second light source (25) is comprised of one or more monochromatic sources, such as laser diodes. The sources are chosen to correspond to wavelength highly correlated with glucose adsorption.
    Type: Application
    Filed: June 5, 2007
    Publication date: August 6, 2009
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Wouter Harry Jacinth Rensen, Golo Von Basum, Markus Laubscher, Gerhardus Wilhelmus Lucassen, Miguel Palacios
  • Publication number: 20090153852
    Abstract: The present invention provides an optical fiber for connecting a probe head and a base station of a spectroscopic analysis system for analyzing the molecular composition of a volume of interest. The optical fiber comprises a core for transmission of excitation radiation from the base station to the probe head and a first cladding for transmission of multi-mode return radiation from the probe head to a spectroscopic analysis unit of the base station. Preferably, the first cladding is surrounded by a second cladding and therefore provides a multi-mode wave guide by itself. Appropriately designing the dimensions of the core, the first cladding and the second cladding provides an optimal collection and coupling efficiency of the optical fiber. Coating of the distal end facet of the optical fiber with multi-layer optical filters allows an effective separation of elastically and inelastically scattered radiation which is of advantage for the spectroscopic analysis.
    Type: Application
    Filed: April 12, 2005
    Publication date: June 18, 2009
    Applicant: Koninklijke Philips Electronics, N.V.
    Inventor: Wouter Harry Jacinth Rensen