Patents by Inventor Wu-Ching Chou

Wu-Ching Chou has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110108797
    Abstract: A single chip type white light LED device includes a first semiconductor layer of a first doping type, a ZnMnSeTe (Zinc Manganese Selenium Tellurium) red light quantum well, a first barrier layer disposed on the ZnMnSeTe red light quantum well, a green light emitting layer including green light quantum dots disposed on the first barrier layer, a second barrier layer disposed on the green light emitting layer, a blue light emitting layer including blue light quantum dots disposed on the second barrier layer, a third barrier layer disposed on the blue light emitting layer, and a second semiconductor layer disposed on the third barrier layer.
    Type: Application
    Filed: November 30, 2009
    Publication date: May 12, 2011
    Inventors: Chu-Shou Yang, Chia-Sing Wu, Wu-Ching Chou, Mei-Tsao Chiang, Chi-Neng Mo, Chih-Wei Luo, Liang-Kuei Huang
  • Patent number: 7777267
    Abstract: The manufacturing method of a nonvolatile memory and its structure is achieved by building a gate dielectric layer on a base. The gate dielectric contains at least two layers of different material layers. At least one hetero element is planted on the top of the gate dielectric layer so as to increase the electronic trap density. Then rebuild a new top material after removing the upmost layer of material. Finally, build a gate electrode layer on the gate dielectric layer and form source/drain electrodes at the bases of both sides of the gate dielectric layer. In this invention, with the planting of the hetero element, it will form traps in the gate dielectric layer that can catch electrons more easily. Thus, the electrons won't combine together with the increase of operation time. The storage time can be effectively extended and the problem of the combination of bites can be solved.
    Type: Grant
    Filed: January 3, 2008
    Date of Patent: August 17, 2010
    Inventors: Erik S Jeng, Wu-Ching Chou, Chih-Hsueh Hung, Chien-Cheng Li
  • Publication number: 20080150048
    Abstract: The manufacturing method of a nonvolatile memory and its structure is achieved by building a gate dielectric layer on a base. The gate dielectric contains at least two layers of different material layers. At least one hetero element is planted on the top of the gate dielectric layer so as to increase the electronic trap density. Then rebuild a new top material after removing the upmost layer of4terial. Finally, build a gate electrode layer on the gate dielectric layer and form source/drain electrodes at the bases of both sides of the gate dielectric layer. In this invention, with the planting of the hetero element, it will form traps in the gate dielectric layer that can catch electrons more easily. Thus, the electrons won't combine together with the increase of operation time. The storage time can be effectively extended and the problem of the combination of bites can be solved.
    Type: Application
    Filed: January 3, 2008
    Publication date: June 26, 2008
    Applicant: CHUNG YUAN CHRISTIAN UNIVERSITY
    Inventors: Erik S. Jeng, Wu-Ching Chou, Chih-Hsueh Hung, Chien-Cheng Li
  • Patent number: 7294202
    Abstract: Process for fabricating self-assembled nanoparticles on buffer layers without mask making and allowing for any degree of lattice mismatch; that is, binary, ternary or quaternary nanoparticles comprising Groups III-V, II-VI or IV-VI. The process includes a first step of applying a buffer layer, a second step of turning on the purge gas to modulate the first reactant to the lower first flow rate, then the second reactant is supplied to the buffer layer to form a metal-rich island on the buffer layer, and a third step of turning on purge gas again to modulate the first reactant to the higher second flow rate onto the buffer layer. On the metal-rich island is formed the nanoparticles of the binary, ternary or quaternary III-V, II-VI and IV-IV semiconductor material. This is then recrystallized under the first reactant flow at high temperature forming high quality nanoparticles.
    Type: Grant
    Filed: December 6, 2004
    Date of Patent: November 13, 2007
    Assignee: National Chiao Tung University
    Inventors: Wei-Kuo Chen, Ming-Chih Lee, Wu-Ching Chou, Wen-Hsiung Chen, Wen-Cheng Ke
  • Patent number: 7179708
    Abstract: A process for fabricating non-volatile memory by tilt-angle ion implantation comprises essentially the steps of implanting sideling within a nitride dielectric layer heterogeneous elements such as, for example, Ge, Si, N2, O2, and the like, for forming traps capable of capturing more electrons within the nitride dielectric layer such that electrons can be prevented from binding together as the operation time increased; etching off both ends of the original upper and underlying oxide layers to reduce the structural destruction caused by the implantation of heterogeneous elements; and finally, depositing an oxide gate interstitial wall to eradicate electron loss and hence promote the reliability of the device.
    Type: Grant
    Filed: July 14, 2004
    Date of Patent: February 20, 2007
    Assignee: Chung Yuan Christian University
    Inventors: Erik S. Jeng, Wu-Ching Chou, Li-Kang Wu, Chien-Chen Li
  • Patent number: 7071087
    Abstract: A technique to grow high quality and large area ZnSe layer on Si substrate is provided, comprising growing GexSi1?x/Ge epitaxial layers on Si substrate by using ultra-high vacuum chemical vapor deposition (UHVCVD), and finally growing a ZnSe film on top Ge buffer layers. Two concepts are applied in the process of this invention, the first one is to block the dislocations generated from GexSi1?x epitaxial layers and to terminate the propagated upward dislocations by using strained interfaces, accordingly the dislocation density of ZnSe layer is greatly reduced and the surface roughness is improved; the second concept is to solve the problems of anti-phase domain due to growth of polar materials on non-polar material using off-cut angle Si substrate, and that is free from diffusion problems between different atoms while generally growing ZnSe layers on Si substrate.
    Type: Grant
    Filed: June 3, 2004
    Date of Patent: July 4, 2006
    Assignee: Witty Mate Corporation
    Inventors: Tsung-Hsi Yang, Chung-Liang Lee, Chu-Shou Yang, Guangli Luo, Wu-Ching Chou, Chun-Yen Chang, Tsung-Yeh Yang
  • Publication number: 20060029792
    Abstract: Process for fabricating self-assembled nanoparticles on buffer layers without mask making and allowing for any degree of lattice mismatch; that is, binary, ternary or quaternary nanoparticles comprising Groups III-V, II-VI or IV-VI. The process includes a first step of applying a buffer layer, a second step of turning on the purge gas to modulate the first reactant to the lower first flow rate, then the second reactant is supplied to the buffer layer to form a metal-rich island on the buffer layer, and a third step of turning on purge gas again to modulate the first reactant to the higher second flow rate onto the buffer layer. On the metal-rich island is formed the nanoparticles of the binary, ternary or quaternary III-V, II-VI and IV-IV semiconductor material. This is then recrystallized under the first reactant flow at high temperature forming high quality nanoparticles.
    Type: Application
    Filed: December 6, 2004
    Publication date: February 9, 2006
    Inventors: Wei-Kuo Chen, Ming-Chih Lee, Wu-Ching Chou, Wen-Hsiung Chen, Wen-Cheng Ke
  • Publication number: 20060019441
    Abstract: A process for fabricating non-volatile memory by tilt-angle ion implantation comprises essentially the steps of implanting sideling within a nitride dielectric layer heterogeneous elements such as, for example, Ge, Si, N2, O2, and the like, for forming traps capable of capturing more electrons within the nitride dielectric layer such that electrons can be prevented from binding together as the operation time increased; etching off both ends of the original upper and underlying oxide layers to reduce the structural destruction caused by the implantation of heterogeneous elements; and finally, depositing an oxide gate interstitial wall to eradicate electron loss and hence promote the reliability of the device.
    Type: Application
    Filed: July 14, 2004
    Publication date: January 26, 2006
    Applicant: Chung Yuan Christian University
    Inventors: Erik Jeng, Wu-Ching Chou, Li-Kang Wu, Chien-Chen Li
  • Publication number: 20050233495
    Abstract: A technique to grow high quality and large area ZnSe layer on Si substrate is provided, comprising growing GexSi1-x/Ge epitaxial layers on Si substrate by using ultra-high vacuum chemical vapor deposition (UHVCVD), and finally growing a ZnSe film on top Ge buffer layers. Two concepts are applied in the process of this invention, the first one is to block the dislocations generated from GexSi1-x epitaxial layers and to terminate the propagated upward dislocations by using strained interfaces, accordingly the dislocation density of ZnSe layer is greatly reduced and the surface roughness is improved; the second concept is to solve the problems of anti-phase domain due to growth of polar materials on non-polar material using off-cut angle Si substrate, and that is free from diffusion problems between different atoms while generally growing ZnSe layers on Si substrate.
    Type: Application
    Filed: June 3, 2004
    Publication date: October 20, 2005
    Inventors: Tsung-Hsi Yang, Chung-Liang Lee, Chu-Shou Yang, Guangli Luo, Wu-Ching Chou, Chun-Yen Chang, Tsung-Yeh Yang
  • Publication number: 20050156228
    Abstract: The manufacturing method of a nonvolatile memory and its structure is achieved by building a gate dielectric layer on a base. The gate dielectric layer contains at least two layers of different material layers. At least one hetero element is planted on the top of the gate dielectric layer so as to increase the electronic trap density. Then rebuild a new top material after removing the upmost layer of material. Finally, build a gate electrode layer on the gate dielectric layer and form source/drain electrodes at the bases of both sides of the gate dielectric layer. In this invention, with the planting of the hetero element, it will form traps in the gate dielectric layer that can catch electrons more easily. Thus, the electrons won't combine together with the increase of operation time. The storage time can be effectively extended and the problem of the combination of bites can be solved.
    Type: Application
    Filed: January 16, 2004
    Publication date: July 21, 2005
    Inventors: Erik Jeng, Wu-Ching Chou, Chih-Hsueh Hung, Chien-Cheng Li