Patents by Inventor Wu Tao

Wu Tao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11051587
    Abstract: A multicolored aglet connected to a shoelace has a unit slice, a pattern layer, and a white background layer. The unit slice is formed into two aglet bodies that are respectively sheathed on two ends of the shoelace, and has a mounting portion. The mounting portion of the unit slice is stuck to an outer side of the unit slice. The pattern layer is printed on and covers the inner side of the unit slice excluding the mounting portion, and is located between the unit slice and the shoelace. The white background layer is printed on the pattern layer and is located between the pattern layer and the shoelace. A method for producing the multicolored aglet is also provided.
    Type: Grant
    Filed: September 19, 2018
    Date of Patent: July 6, 2021
    Assignee: CHEN TAI LACES CO., LTD.
    Inventor: Wu-Tao Lin
  • Publication number: 20210146484
    Abstract: A resistance spot welding electrode cap contains a groove at the center of the welding contact interface. During welding, because of the groove, the area of contact between the electrode cap and a metal workpiece to be soldered is reduced. In the initial stage, the overall heat generation is concentrated on the outer ring of the weld point and heat dissipation becomes slower, helping a weld nugget to form from the outside to the inside. Due to the presence of the groove, the metal workpiece expands toward the groove at the center of the electrode, thereby increasing the size of the weld nugget and reducing splash and deformation. In comparison with conventional electrode caps, the welding current required to form weld points of the same size is lower, saving on electricity costs, and weld points obtained using the same current have higher strength and stability with fewer welding defects.
    Type: Application
    Filed: December 18, 2018
    Publication date: May 20, 2021
    Inventors: Shanglu YANG, Yanjun WANG, Wu TAO
  • Patent number: 10953497
    Abstract: A method of laser welding a workpiece stack-up (10) of overlapping steel workpieces (12, 14) involves heat-treating a region (64) of the stack-up (10) followed by forming a laser weld joint (66) that is located at least partially within the heat-treated region (64). During heat-treating, one or more pre-welding laser beams (68) are sequentially directed at a top surface (20) of the workpiece stack-up (10) and advanced along a pre-welding beam travel pattern (70) so as to reduce an amount of vaporizable zinc within the stack-up (10). Thereafter, the laser weld joint (66) is formed by directing a welding laser beam (82) at the top surface (20) of the workpiece stack-up (10) and advancing the welding laser beam (82) along a welding beam travel pattern (84) that at least partially overlaps with a coverage area of a pre-welding beam travel pattern (70) or a shared coverage area portion of multiple pre-welding beam travel patterns (70).
    Type: Grant
    Filed: November 23, 2016
    Date of Patent: March 23, 2021
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Hui-Ping Wang, Yu Pan, Blair E. Carlson, Joshua L. Solomon, William P. Payne, David Yang, Wu Tao
  • Patent number: 10953494
    Abstract: A method of laser welding a workpiece stack-up (10) that includes at least two overlapping metal workpieces (12, 14) comprises advancing a laser beam (24) relative to a plane of a top surface (20) of the workpiece stack-up (10) from a start point (84) to an end point (86) along a beam travel pattern (78) at a high laser beam travel speed of greater than 8 meters per minute. The two or more overlapping metal workpieces (12, 14) may be steel workpieces or they may be aluminum workpieces, and at least one of the metal workpieces (12, 14) includes a surface coating (40). Advancing the laser beam (24) along the beam travel pattern (78) forms a weld joint (76), which includes resolidified composite workpiece material derived from each of the metal workpieces (12, 14) penetrated by a molten weld pool (80), that fusion welds the metal workpieces (12, 14) together. The relatively high laser beam travel speed contributes to improve strength properties of the weld joint (76).
    Type: Grant
    Filed: March 16, 2016
    Date of Patent: March 23, 2021
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: David Yang, Wu Tao
  • Patent number: 10946479
    Abstract: A method of laser welding a workpiece stack-up (10) that includes at least two overlapping aluminum workpieces comprises advancing a laser beam (24) relative to a plane of a top surface (20) of the workpiece stack-up (10) and along a beam travel pattern (74) that lies within an annular weld area (82) defined by an inner diameter boundary (86) and an outer diameter boundary (84) on the plane of the top surface (20). The beam travel pattern (74) of the laser beam (24) surrounds a center area encircled by the annular weld area (82) on the plane of the top surface (20) so as to force entrained porosity inwards into a region of the weld joint (72) beneath the center area on the plane of the top surface (20) of the workpiece stack-up (10).
    Type: Grant
    Filed: April 14, 2016
    Date of Patent: March 16, 2021
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: David Yang, Wu Tao
  • Patent number: 10886181
    Abstract: Semiconductor device is provided. The semiconductor device includes a base substrate and a first dielectric layer on the base substrate. The first dielectric layer contains a first trench and a second trench passing therethrough, and a width of the second trench is larger than a width of the first trench. The semiconductor device further includes a first gate dielectric layer and a first gate electrode in the first trench. A first recess is on the first gate dielectric layer between the first gate electrode and the first dielectric layer. The semiconductor device further includes a second gate dielectric layer and a second gate electrode in the second trench. A second recess is on the second gate dielectric layer between the second gate electrode and the first dielectric layer. The semiconductor device further includes a first protection layer in the first recess and a second protection layer in the second recess.
    Type: Grant
    Filed: April 29, 2020
    Date of Patent: January 5, 2021
    Assignees: Semiconductor Manufacturing International (Shanghai) Corporation, SMIC New Technology Research and Development (Shanghai) Corporation
    Inventors: Zhi Dong Wang, Cheng Long Zhang, Wu Tao Tu
  • Publication number: 20200316714
    Abstract: A method of laser spot welding a workpiece stack-up (10) includes initially forming at least one hole (74) in the workpiece stack-up and, thereafter, forming a laser spot weld joint (86). The formation of the laser spot weld joint involves directing a welding laser beam (24) at the top surface (20) of the workpiece stack-up to create a molten steel weld pool (98) that penetrates into the stack-up, and then advancing the welding laser beam relative to a plane of the top surface of the workpiece stack-up along a beam travel pattern (102) that lies within an annular weld area (90). The beam travel pattern of the welding laser beam surrounds a center area (96) on the plane of the top surface that spans the at least one hole formed in the workpiece stack-up. The workpiece stack-up includes at least two overlapping steel workpieces, at least one of which includes a surface coating of a zinc-based material. This method can minimize porosity within the weld joint.
    Type: Application
    Filed: April 14, 2016
    Publication date: October 8, 2020
    Inventors: David Yang, Wu Tao
  • Publication number: 20200316713
    Abstract: A method of laser spot welding a workpiece stack-up (10) that includes at least two overlapping steel workpieces (12,14), at least one of which includes a surface coating (40), is disclosed. The method includes directing a laser beam (24) at the top surface (20) of the workpiece stack-up (10) to create a molten steel weld pool (90) that penetrates into the stack-up (10). The molten steel weld pool (90) is then grown to penetrate further into the stack-up (10) by increasing an irradiance of the laser beam (24) while reducing the projected sectional area (86) of the laser beam (24) at a plane of the top surface (20) of the workpiece stack-up (10). Increasing the irradiance of the laser beam (24) may be accomplished by moving a focal point (62) of the laser beam (24) closer to the top surface (20) or by reducing an angle of incidence (82) of the laser beam (24) so as to reduce the eccentricity of the projected sectional area (86) of the laser beam (24).
    Type: Application
    Filed: January 18, 2016
    Publication date: October 8, 2020
    Inventors: David Yang, Wu Tao, Li Sun
  • Publication number: 20200258787
    Abstract: Semiconductor device is provided. The semiconductor device includes a base substrate and a first dielectric layer on the base substrate. The first dielectric layer contains a first trench and a second trench passing therethrough, and a width of the second trench is larger than a width of the first trench. The semiconductor device further includes a first gate dielectric layer and a first gate electrode in the first trench. A first recess is on the first gate dielectric layer between the first gate electrode and the first dielectric layer. The semiconductor device further includes a second gate dielectric layer and a second gate electrode in the second trench. A second recess is on the second gate dielectric layer between the second gate electrode and the first dielectric layer. The semiconductor device further includes a first protection layer in the first recess and a second protection layer in the second recess.
    Type: Application
    Filed: April 29, 2020
    Publication date: August 13, 2020
    Inventors: Zhi Dong WANG, Cheng Long ZHANG, Wu Tao TU
  • Patent number: 10688595
    Abstract: A method of laser welding a workpiece stack-up (10) that includes at least two overlapping steel workpieces (12, 14) comprises directing a laser beam (40) at a top surface (26) of the workpiece stack-up to form a keyhole (56) surrounded by a molten steel weld pool (58). The laser beam is conveyed along a predefined weld pattern that includes one or more nonlinear inner weld paths (66) and an enclosed outer peripheral weld path (68) surrounding the one or more nonlinear inner weld paths. During conveyance of the laser beam along the one or more nonlinear inner weld paths, the keyhole fully penetrates through the workpiece stack-up from the top surface of the stack-up to the bottom surface (28) of the stack-up. The method produces weld joints between the steel workpieces that do not have an intentionally imposed gap formed between their faying surfaces.
    Type: Grant
    Filed: June 2, 2015
    Date of Patent: June 23, 2020
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: David S. Yang, Justin Allen Wolsker, Jing Zhang, Wu Tao, Dalong Gao
  • Patent number: 10675701
    Abstract: A method of resistance spot welding a workpiece stack-up comprising overlapping first and second steel workpieces is disclosed, wherein at least one of the steel workpieces comprises an advanced high-strength steel substrate. The workpiece stack-up is positioned between a pair of opposed first and second welding electrodes. A cover is disposed between at least one of the first steel workpiece and the first welding electrode or the second steel workpiece and the second welding electrode at an intended weld site. The workpiece stack-up is clamped between the first and second welding electrodes at the weld site such that at least one of the weld faces of the first and second welding electrodes presses against the cover. The first and second steel workpieces are welded together by passing an electrical current between the first and second welding electrodes at the weld site.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: June 9, 2020
    Assignee: GM Global Technology Operations LLC
    Inventors: David Yang, Wu Tao, Qi Lu, Blair E Carlson
  • Patent number: 10679902
    Abstract: Semiconductor device and fabrication method are provided.
    Type: Grant
    Filed: December 27, 2018
    Date of Patent: June 9, 2020
    Assignees: Semiconductor Manufacturing International (Shanghai) Corporation, SMIC New Technology Research and Development (Shanghai) Corporation
    Inventors: Zhi Dong Wang, Cheng Long Zhang, Wu Tao Tu
  • Patent number: 10675713
    Abstract: A method of laser welding a workpiece stack-up that includes two or more overlapping metal workpieces is disclosed. The disclosed method includes directing a laser beam at a top surface of the workpiece stack-up to create a molten metal weld pool and, optionally, a keyhole, and further gyrating the laser beam to move a focal point of the laser beam along a helical path having a central helix axis oriented transverse to the top and bottom surfaces of the workpiece stack-up. The gyration of the laser beam may even be practiced to move the focal point of the laser beam along a plurality of helical paths so as to alternately convey the focal point back-and-forth in a first overall axial direction and a second overall axial direction while advancing the laser beam relative to the top surface of the workpiece stack-up along a beam travel pattern.
    Type: Grant
    Filed: July 25, 2017
    Date of Patent: June 9, 2020
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: David Yang, Wu Tao, Paolo A. Novelletto, Yu Pan, Justin Wolsker
  • Publication number: 20200171603
    Abstract: A method of laser welding together two or more overlapping metal workpieces (12, 14, or 12, 150, 14) included in a welding region (16) of a workpiece stack-up (10) involves advancing a beam spot (44) of a laser beam (24) relative to a top surface (20) of the workpiece stack-up along a first weld path (72) in a first direction (74) to form an elongated melt puddle (76) and, then, advancing the beam spot (44) of the laser beam (24) along a second weld path (78) in a second direction (80) that is opposite of the first direction while the elongated melt puddle is still in a molten state. The first weld path and the second weld path overlap so that the beam spot of the laser beam is conveyed through the elongated melt puddle when the beam spot is advanced along the second weld path.
    Type: Application
    Filed: June 13, 2017
    Publication date: June 4, 2020
    Inventors: David Yang, Wu Tao
  • Publication number: 20200114469
    Abstract: A method of laser welding together two or more overlapping light metal workpieces (12, 14, or 12, 150, 14) involves advancing a laser beam (24) relative to the top surface (20) of the workpiece stack-up (10) multiple times along a closed-curve weld path (72). The conductive heat transfer associated with such advancement of the laser beam (24) grows and develops a larger melt puddle (76) that penetrates into the workpiece stack-up (10) and intersects each faying interface (34 or 160, 162) established within the stack-up (10). Upon halting transmission of the laser beam (24) or otherwise removing the laser beam (24) from the closed-curved weld path (72), the melt puddle (76) solidifies into a laser weld joint (66) comprised of resolidified composite workpiece material (78).
    Type: Application
    Filed: February 9, 2017
    Publication date: April 16, 2020
    Inventors: Wu Tao, David Yang, Yu Pan
  • Publication number: 20200112015
    Abstract: A laser welder and associated method for joining battery cell foils to a battery tab is described. The joining method includes arranging the plurality of battery cell foils in a stack, wherein the first edges of the battery cell foils are disposed in parallel. The battery cell foils arranged in the stack are positioned such that the first edges of the battery cell foils underlap with the battery tab. A compressive load may be applied to the plurality of battery cell foils and the battery tab. The laser welder executes welding operation to form a weld joint that mechanically and electrically joins the battery cell foils and the battery tab. The welding operation includes the laser welder applying a laser beam to the second surface of the battery tab. The welding operation is executed near first edges of the battery cell foils.
    Type: Application
    Filed: October 4, 2018
    Publication date: April 9, 2020
    Applicant: GM Global Technology Operations LLC
    Inventors: Wu Tao, Teresa J. Rinker
  • Publication number: 20200101563
    Abstract: A method for joining together metal workpieces (12, 14, 150) includes advancing a beam spot (44) of a laser beam (24) relative to the top surface (20) of the workpiece stack-up (10) along a primary beam travel pattern (78) to create a molten metal portion (70) within the workpiece stack-up and, thereafter, reducing a power density of the laser beam and moving the beam spot of the laser beam relative to an upper surface (82) of the molten metal portion along a secondary beam travel pattern (84) to introduce heat into the molten metal portion such that the molten metal portion is prevented from fully solidifying and at least an upper region (86) of the molten metal portion that includes the upper surface is maintained in a molten state. The laser beam is then removed from the molten metal portion to allow the molten metal portion to solidify into a laser weld joint (66). The laser weld joint have a smooth top surface.
    Type: Application
    Filed: April 3, 2017
    Publication date: April 2, 2020
    Inventors: Wu Tao, David Yang
  • Publication number: 20200094350
    Abstract: A method for joining together metal workpiece (12,14 or 12,150,14) includes forming a laser weld joint (66) in a workpiece stack-up (10) that fusion welds two or more overlapping metal workpiece (12,14 or 12,150 or 14) together. The laser weld joint (66) has an initial top surface (76). Once the laser weld joint (66) is formed, the method calls for impinging the laser weld joint (66) with a laser beam (24) and moving the laser beam (24) along the initial joint (66) including the initial top surface (76). The laser beam (24) is eventually removed from the laser weld joint (66) to allow the melted upper portion (78) of the joint (66) to resolidify and provide the laser weld joint (66) with a modified top surface (84) that is smoother than the initial top surface (76). By providing the laser weld joint with a smoother modified top surface, residual stress concentration points are removed and the laser weld joint is less liable to damage seal strips.
    Type: Application
    Filed: February 9, 2017
    Publication date: March 26, 2020
    Inventors: Yu Pan, David Yang, Wu Tao, Paolo Novelletto
  • Publication number: 20200094351
    Abstract: A device and associated method for joining, via a laser welder, a first workpiece to a second workpiece is described. This includes arranging the first and second workpieces in a stack, including overlapping a portion of the first workpiece with a portion of the second workpiece. The laser welder generates a first laser beam and coincidentally controls the laser welder to traverse a desired weld path that is disposed on the top surface of the first workpiece. The laser devices generates a second laser beam and coincidentally controls the laser welder to traverse the desired weld path. Generating, via the laser welder, the first laser beam includes operating the laser welder at a pulsed operation and at a first power level. Generating, via the laser welder, the second laser beam includes operating the laser welder at a continuous operation and at a second power level.
    Type: Application
    Filed: September 25, 2018
    Publication date: March 26, 2020
    Applicant: GM Global Technology Operations LLC
    Inventor: Wu Tao
  • Publication number: 20200085146
    Abstract: A multicolored aglet connected to a shoelace has a unit slice, a pattern layer, and a white background layer. The unit slice is formed into two aglet bodies that are respectively sheathed on two ends of the shoelace, and has a mounting portion. The mounting portion of the unit slice is stuck to an outer side of the unit slice. The pattern layer is printed on and covers the inner side of the unit slice excluding the mounting portion, and is located between the unit slice and the shoelace. The white background layer is printed on the pattern layer and is located between the pattern layer and the shoelace. A method for producing the multicolored aglet is also provided.
    Type: Application
    Filed: September 19, 2018
    Publication date: March 19, 2020
    Applicant: CHEN TAI LACES CO., LTD.
    Inventor: Wu-Tao Lin