Patents by Inventor Wu-Wei Tsai

Wu-Wei Tsai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11955561
    Abstract: A disclosed transistor structure includes a gate electrode, an active layer, a source electrode, a drain electrode, an insulating layer separating the gate electrode from the active layer, and a carrier modification device that reduces short channel effects by reducing carrier concentration variations in the active layer. The carrier modification device may include a capping layer in contact with the active layer that acts to increase a carrier concentration in the active layer. Alternatively, the carrier modification device may include a first injection layer in contact with the source electrode and the active layer separating the source electrode from the active layer, and a second injection layer in contact with the drain electrode and the active layer separating the drain electrode from the active layer. The first and second injection layers may act to reduce a carrier concentration within the active layer near the source electrode and the drain electrode.
    Type: Grant
    Filed: July 22, 2021
    Date of Patent: April 9, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Wu-Wei Tsai, Hai-Ching Chen
  • Publication number: 20240113225
    Abstract: A semiconductor device includes a gate, a semiconductor structure, a gate insulating layer, a first source/drain feature and a second source/drain feature. The gate insulating layer is located between the gate and the semiconductor structure. The semiconductor structure includes at least one first metal oxide layer, a first oxide layer, and at least one second metal oxide layer. The first oxide layer is located between the first metal oxide layer and the second metal oxide layer. The first source/drain feature and the second source/drain feature are electrically connected with the semiconductor structure.
    Type: Application
    Filed: January 10, 2023
    Publication date: April 4, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wu-Wei Tsai, Yan-Yi Chen, Hai-Ching Chen, Yu-Ming Lin, Chung-Te Lin
  • Publication number: 20240113222
    Abstract: Some embodiments relate to a thin film transistor comprising an active layer over a substrate. An insulator is stacked with the active layer. A gate electrode structure is stacked with the insulator and includes a gate material layer having a first work function and a first interfacial layer. The first interfacial layer is directly between the insulator and the gate material layer, wherein the gate electrode structure has a second work function that is different from the first work function.
    Type: Application
    Filed: January 3, 2023
    Publication date: April 4, 2024
    Inventors: Yan-Yi Chen, Wu-Wei Tsai, Yu-Ming Hsiang, Hai-Ching Chen, Yu-Ming Lin, Chung-Te Lin
  • Publication number: 20240038854
    Abstract: A semiconductor structure includes an active layer, a first gate insulator layer disposed over the active layer, a first gate layer disposed over the gate insulator layer, at least one charged layer disposed between the first gate insulator layer and the active layer, and a pair of contact structures disposed over the active layer. The at least one charged layer includes an oxide material.
    Type: Application
    Filed: July 28, 2022
    Publication date: February 1, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wu-Wei Tsai, Yan-Yi Chen, Yu-Ming Hsiang, Hai-Ching Chen, Chung-Te Lin
  • Publication number: 20240006538
    Abstract: A method of forming a semiconductor device is provided. A gate electrode is formed within an insulating layer that overlies a substrate. A gate dielectric layer is formed over the gate electrode. A first oxide semiconductor layer is formed over the gate dielectric layer. A dielectric layer is formed over the first oxide semiconductor layer. The dielectric layer and the first oxide semiconductor layer are patterned, so as to form first and second openings that expose portions of the gate dielectric layer. An interfacial layer is conformally formed on sidewalls and bottoms of the first and second openings. A second oxide semiconductor layer is formed over the interfacial layer in the first and second openings. A metal layer is formed over the second oxide semiconductor layer in the first and second openings.
    Type: Application
    Filed: July 3, 2022
    Publication date: January 4, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wu-Wei Tsai, Po-Ting Lin, Kai-Wen Cheng, Sai-Hooi Yeong, Han-Ting Tsai, Ya-Ling Lee, Hai-Ching Chen, Chung-Te Lin, Yu-Ming Lin
  • Publication number: 20240008287
    Abstract: A memory device and a manufacturing method thereof is described. The memory device includes a transistor structure over a substrate and a ferroelectric capacitor structure electrically connected with the transistor structure. The ferroelectric capacitor structure includes a top electrode layer, a bottom electrode layer and a ferroelectric stack sandwiched there-between. The ferroelectric stack includes a first ferroelectric layer, a first stabilizing layer, and one of a second ferroelectric layer or a second stabilizing layer. Materials of the first stabilizing layer and a second stabilizing layer include a metal oxide material.
    Type: Application
    Filed: July 4, 2022
    Publication date: January 4, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Po-Ting Lin, Wei-Chih Wen, Kai-Wen Cheng, Wu-Wei Tsai, Yu-Ming Hsiang, Yan-Yi Chen, Hai-Ching Chen, Yu-Ming Lin, Chung-Te Lin
  • Publication number: 20230378369
    Abstract: A thin film transistor includes an active layer and at least one gate stack. The active layer may be formed using multiple iterations of a unit layer stack deposition process, which includes an acceptor-type oxide deposition process and a post-transition metal oxide deposition process. A surface of each gate dielectric within the at least one gate stack contacts a surface of a respective layer of the oxide of the acceptor-type element so that leakage current of the active layer may be minimized. A source electrode and a drain electrode may contact an oxide layer providing lower contact resistance such as a layer of the post-transition metal oxide or a zinc oxide layer within the active layer.
    Type: Application
    Filed: July 26, 2023
    Publication date: November 23, 2023
    Inventors: Wu-Wei TSAI, Po-Ting LIN, Hai-Ching CHEN, Chung-Te LIN
  • Publication number: 20230369439
    Abstract: A thin film transistor may be manufactured by forming a gate electrode in an insulating layer over a substrate, forming a gate dielectric over the gate electrode and the insulating layer, forming an active layer over the gate electrode, and forming a source electrode and a drain electrode contacting a respective portion of a top surface of the active layer. A surface oxygen concentration may be increased in at least one of the gate dielectric and the active layer by introducing oxygen atoms into a surface region of a respective one of the gate dielectric and the active layer.
    Type: Application
    Filed: July 26, 2023
    Publication date: November 16, 2023
    Inventors: Wu-Wei TSAI, Chun-Chieh LU, Hai-Ching CHEN, Yu-Ming LIN, Sai-Hooi YEONG
  • Publication number: 20230062886
    Abstract: In some embodiments, the present disclosure relates to a device that includes an active layer, a gate electrode, a passivation structure, a source contact, and a drain contact arranged over a substrate. The gate electrode is arranged over the substrate and is spaced apart from the active layer by a gate dielectric layer. The passivation structure is arranged over the active layer. The source contact extends through the passivation structure and contacts the active layer. The drain contact extends through the passivation structure and contacts the active layer. The passivation structure is hydrophobic.
    Type: Application
    Filed: August 26, 2021
    Publication date: March 2, 2023
    Inventors: Wu-Wei Tsai, Hai-Ching Chen
  • Publication number: 20230021699
    Abstract: A disclosed transistor structure includes a gate electrode, an active layer, a source electrode, a drain electrode, an insulating layer separating the gate electrode from the active layer, and a carrier modification device that reduces short channel effects by reducing carrier concentration variations in the active layer. The carrier modification device may include a capping layer in contact with the active layer that acts to increase a carrier concentration in the active layer. Alternatively, the carrier modification device may include a first injection layer in contact with the source electrode and the active layer separating the source electrode from the active layer, and a second injection layer in contact with the drain electrode and the active layer separating the drain electrode from the active layer. The first and second injection layers may act to reduce a carrier concentration within the active layer near the source electrode and the drain electrode.
    Type: Application
    Filed: July 22, 2021
    Publication date: January 26, 2023
    Inventors: Wu-Wei TSAI, Hai-Ching Chen
  • Publication number: 20220344510
    Abstract: A thin film transistor includes a stack of an active layer, a gate dielectric, and a gate electrode in a forward or in a reverse order. The active layer includes a compound semiconductor material containing oxygen, at least one acceptor-type element selected from Ga and W, and at least one heavy post-transition metal element selected from In and Sn. An atomic percentage of the at least one heavy post-transition metal element at a first surface portion of the active layer that contacts the gate dielectric is higher than an atomic percentage of the at least one heavy post-transition metal element at a second surface portion of the active layer located on an opposite side of the gate dielectric. The front channel current may be increased, and the back channel leakage current may be decreased.
    Type: Application
    Filed: September 20, 2021
    Publication date: October 27, 2022
    Inventors: Wu-Wei Tsai, Hai-Ching Chen, Po-Ting Lin
  • Publication number: 20220328699
    Abstract: A stack including an active layer, a gate dielectric, and a gate electrode is formed in a forward or in a reverse order, over a substrate. The active layer includes a front channel layer, a bulk semiconductor layer, and a back channel layer. The front channel layer is formed by depositing a layer stack that include at least one post-transition metal oxide layer, a zinc oxide layer, and at least one acceptor-type oxide layer. The zinc oxide layer or at least one post transition metal oxide layer contacts the gate dielectric, and the at least one acceptor-type oxide layer is most distal from the gate dielectric. The front channel layer provides enhanced channel conductivity, while the back channel layer provides suppressed channel conductivity.
    Type: Application
    Filed: September 20, 2021
    Publication date: October 13, 2022
    Inventors: Wu-Wei TSAI, Hai-Ching CHEN, Sai-Hooi YEONG, Yu-Ming LIN
  • Publication number: 20220271166
    Abstract: A thin film transistor includes an active layer and at least one gate stack. The active layer may be formed using multiple iterations of a unit layer stack deposition process, which includes an acceptor-type oxide deposition process and a post-transition metal oxide deposition process. A surface of each gate dielectric within the at least one gate stack contacts a surface of a respective layer of the oxide of the acceptor-type element so that leakage current of the active layer may be minimized. A source electrode and a drain electrode may contact an oxide layer providing lower contact resistance such as a layer of the post-transition metal oxide or a zinc oxide layer within the active layer.
    Type: Application
    Filed: September 8, 2021
    Publication date: August 25, 2022
    Inventors: Wu-Wei TSAI, Po-Ting LIN, Hai-Ching CHEN, Chung-Te LIN
  • Publication number: 20220254897
    Abstract: A thin film transistor may be manufactured by forming a gate electrode in an insulating layer over a substrate, forming a gate dielectric over the gate electrode and the insulating layer, forming an active layer over the gate electrode, and forming a source electrode and a drain electrode contacting a respective portion of a top surface of the active layer. A surface oxygen concentration may be increased in at least one of the gate dielectric and the active layer by introducing oxygen atoms into a surface region of a respective one of the gate dielectric and the active layer.
    Type: Application
    Filed: September 7, 2021
    Publication date: August 11, 2022
    Inventors: Wu-Wei TSAI, Chun-Chieh LU, Hai-Ching CHEN, Yu-Ming LIN, Sai-Hooi YEONG
  • Publication number: 20220254931
    Abstract: A semiconductor device includes an insulating layer embedding a gate electrode and overlying a substrate, a stack of a gate dielectric including a gate dielectric material, a dielectric diffusion barrier liner including a dielectric diffusion barrier material, and an active layer overlying a top surface of the gate electrode, and a source electrode and a drain electrode contacting a respective portion of a top surface of the active layer. The dielectric diffusion barrier material is different from the gate dielectric material and is selected from a dielectric metal oxide material and a dielectric compound of silicon, and suppresses loss of metallic elements during subsequent anneal processes.
    Type: Application
    Filed: September 7, 2021
    Publication date: August 11, 2022
    Inventors: Wu-Wei TSAI, Hai-Ching CHEN, Sai-Hooi YEONG, Yu-Ming LIN
  • Patent number: 9391208
    Abstract: An electronic device including at least one electronic component and a method of manufacturing the same are provided. The electronic device may include a substrate, a semiconductor layer disposed on the substrate, an insulating layer disposed on the semiconductor layer, and a first metal layer disposed on the insulating layer. The insulating layer may have a pattern corresponding to a pattern of the semiconductor layer or the first metal layer. The flexible layer has a Young's modulus less than 40 GPa and is disposed on the substrate to encapsulate the semiconductor layer. At least one first opening penetrates the flexible layer. At least one second metal layer is disposed on the flexible layer and in the first opening and electrically connected to the semiconductor layer.
    Type: Grant
    Filed: October 17, 2014
    Date of Patent: July 12, 2016
    Assignee: Industrial Technology Research Institute
    Inventors: Jing-Yi Yan, Wu-Wei Tsai, Wei-Cheng Kao, Wei-Han Chen
  • Patent number: 9368441
    Abstract: An electronic component and a method for fabricating the electronic component are provided. The electronic component includes a carrier, a first metal layer, a dielectric layer, a semiconductor layer, a flexible layer, at least one first opening, and at least one second metal layer. The first metal layer is disposed on the carrier. The dielectric layer is disposed on the first metal layer, and has a pattern consistent with a pattern of the dielectric layer. The semiconductor layer is disposed on the dielectric layer. The flexible layer is disposed on the carrier and encapsulates the first metal layer, the dielectric layer and the semiconductor layer. The flexible layer has a Young's modulus less than 40 GPa. The first opening penetrates the flexible layer. The second metal layer is disposed on the flexible layer and in the first opening and is electrically connected with the semiconductor layer.
    Type: Grant
    Filed: December 4, 2014
    Date of Patent: June 14, 2016
    Assignee: Industrial Technology Research Institute
    Inventors: Jing-Yi Yan, Wu-Wei Tsai, Wei-Cheng Kao, Wei-Han Chen
  • Patent number: 9331294
    Abstract: A vertical electro-optical component and a method for forming the same are provided. The vertical electro-optical component includes a substrate, a first electrode layer formed on the substrate, a patterned insulating layer formed on the first electrode layer, a metal layer formed on the patterned insulating layer, a semiconductor layer formed on the first electrode layer, and a second electrode layer formed on the semiconductor layer, wherein the semiconductor layer encapsulates the patterned insulating layer and the metal layer. The vertical electro-optical component thus has a low operational voltage of a vertical transistor and a high reaction speed of a photo diode, and may be used to form light-emitting transistors.
    Type: Grant
    Filed: March 31, 2014
    Date of Patent: May 3, 2016
    Assignee: National Chiao Tung University
    Inventors: Hsiao-Wen Zan, Hsin-Fei Meng, Wu-Wei Tsai, Yu-Chiang Chao
  • Publication number: 20160111551
    Abstract: An electronic device including at least one electronic component and a method of manufacturing the same are provided. The electronic device may include a substrate, a semiconductor layer disposed on the substrate, an insulating layer disposed on the semiconductor layer, and a first metal layer disposed on the insulating layer. The insulating layer may have a pattern corresponding to a pattern of the semiconductor layer or the first metal layer. The flexible layer has a Young's modulus less than 40 GPa and is disposed on the substrate to encapsulate the semiconductor layer. At least one first opening penetrates the flexible layer. At least one second metal layer is disposed on the flexible layer and in the first opening and electrically connected to the semiconductor layer.
    Type: Application
    Filed: October 17, 2014
    Publication date: April 21, 2016
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Jing-Yi Yan, Wu-Wei Tsai, Wei-Cheng Kao, Wei-Han Chen
  • Publication number: 20150348894
    Abstract: An electronic component and a method for fabricating the electronic component are provided. The electronic component includes a carrier, a first metal layer, a dielectric layer, a semiconductor layer, a flexible layer, at least one first opening, and at least one second metal layer. The first metal layer is disposed on the carrier. The dielectric layer is disposed on the first metal layer, and has a pattern consistent with a pattern of the dielectric layer. The semiconductor layer is disposed on the dielectric layer. The flexible layer is disposed on the carrier and encapsulates the first metal layer, the dielectric layer and the semiconductor layer. The flexible layer has a Young's modulus less than 40 GPa. The first opening penetrates the flexible layer. The second metal layer is disposed on the flexible layer and in the first opening and is electrically connected with the semiconductor layer.
    Type: Application
    Filed: December 4, 2014
    Publication date: December 3, 2015
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Jing-Yi Yan, Wu-Wei Tsai, Wei-Cheng Kao, Wei-Han Chen