Patents by Inventor Wulin Yang

Wulin Yang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240132729
    Abstract: A titanium dioxide micro-nanocontainers, corrosion-resistant waterborne epoxy coatings and preparation method thereof, including preparation steps as follows: TiO2 micro-nano spheres are synthesized by applying hydrothermal method; a polyaniline layer doped with molybdate ions is deposited on the surface of TiO2 micro-nano spheres by adopting the method of in-situ chemical polymerization, TiO2/PANI-MoO42? micro-nano-spheres are obtained, then, polydopamine is encapsulated on the surface of TiO2/PANI-MoO42? micro-nano spheres to obtain titanium dioxide micro-nanocontainers; next, antirust filler, defoamer, dispersant and thickener are added into waterborne epoxy emulsion, then titanium dioxide micro-nanocontainers are added in the waterborne epoxy emulsion for dispersing and grinding, filtering and encapsulating to obtain component A; the waterborne epoxy curing agent and deionized water are mixed in proportion to obtain component B; component A is stirred, then it is mixed with the component B in proportion,
    Type: Application
    Filed: November 30, 2022
    Publication date: April 25, 2024
    Inventors: Haitao Duan, Yijie Jin, Dan Jia, Shengpeng Zhan, Jiesong Tu, Tian Yang, Wulin Zhang, Lixin Ma, Yinhua Li
  • Publication number: 20210121828
    Abstract: A method of providing fouling control in a membrane system includes generating a sacrificial protective layer (PL) on a surface of a membrane of the membrane system by coating the membrane with at least one polyelectrolyte layer, removing the PL from the membrane with a saline solution after the PL is fouled, and regenerating a new PL on the surface of the membrane by coating the membrane with at least one polyelectrolyte layer such that foulants present in a feed water accumulate on the PL, rather than on the membrane. The method further comprises one or more of the following: a) the saline solution is being applied with a shear force; b) the pH value of the saline solution is substantially neutral; c) the saline solution is non-toxic; d) the PL is removed without a backwash; e) the PL is not an active filtration layer, wherein a pore size of the PL is greater than a pore size of the membrane; and/or f) the PL is not disposed in pores of the membrane.
    Type: Application
    Filed: June 21, 2019
    Publication date: April 29, 2021
    Applicant: KING ABDULLAH UNIVERSITY OF SCIENCE AND TECHNOLOGY
    Inventors: Moon Son, Bruce E. Logan, Wulin Yang, Johannes Vrouwenvelder, Szilard Bucs
  • Patent number: 10431842
    Abstract: Thermally regenerative ammonia-based battery systems and methods of their use to produce electricity are provided according to aspects described herein in which ammonia is added into an anolyte to charge the battery, producing potential between the electrodes. At the anode, metal corrosion occurs in the ammonia solution to form an amine complex of the corresponding metal, while reduction of the same metal occurs at the cathode. After the discharge of electrical power produced, ammonia is separated from the anolyte which changes the former anolyte to catholyte, and previous anode to cathode by deposition of the metal. When ammonia is added to the former catholyte to make it as anolyte, the previous cathode becomes the anode. This alternating corrosion/deposition cycle allows the metal of the electrodes to be maintained in closed-loop cycles, and waste heat energy is converted to electricity by regeneration of ammonia, such as by distillation.
    Type: Grant
    Filed: October 9, 2015
    Date of Patent: October 1, 2019
    Assignee: The Penn State Research Foundation
    Inventors: Fang Zhang, Jia Liu, Wulin Yang, Bruce E. Logan
  • Publication number: 20170250433
    Abstract: Thermally regenerative ammonia-based battery systems and methods of their use to produce electricity are provided according to aspects described herein in which ammonia is added into an anolyte to charge the battery, producing potential between the electrodes. At the anode, metal corrosion occurs in the ammonia solution to form an ammine complex of the corresponding metal, while reduction of the same metal occurs at the cathode. After the discharge of electrical power produced, ammonia is separated from the anolyte which changes the former anolyte to catholyte, and previous anode to cathode by deposition of the metal. When ammonia is added to the former catholyte to make it as anolyte, the previous cathode becomes the anode. This alternating corrosion/deposition cycle allows the metal of the electrodes to be maintained in closed-loop cycles, and waste heat energy is converted to electricity by regeneration of ammonia, such as by distillation.
    Type: Application
    Filed: October 9, 2015
    Publication date: August 31, 2017
    Inventors: Fang Zhang, Jia Liu, Wulin Yang, Bruce E. Logan