Patents by Inventor Wyatt Keith Metzger

Wyatt Keith Metzger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210210606
    Abstract: Disclosed herein are the use of materials that have high affinity for oxygen, “oxygen getters” (e.g. Al), in conjunction with group V dopants (e.g. As) in II-VI materials (e.g. CdTe, Cd(Se)Te), that enable p-type doping by reducing group V oxides found in as-grown II-VI materials, thereby freeing up the anionic form of the Group V element.
    Type: Application
    Filed: November 16, 2020
    Publication date: July 8, 2021
    Inventors: Eric Michael COLEGROVE, Matthew Owen REESE, Wyatt Keith METZGER, Craig Lyle PERKINS
  • Patent number: 10304989
    Abstract: Methods for growing and using large-grain templates are provided. According to an aspect of the invention, a method includes depositing a small-grain layer of a semiconductor material; treating the small-grain layer such that the small-grain layer becomes a large-grain layer; and growing an epitaxial layer of the semiconductor material on the large-grain layer. A ratio of an average grain size of the small-grain layer to a thickness of the small-grain layer is less than 1.0, and a ratio of an average grain size of the large-grain layer to a thickness of the large-grain layer is greater than 1.5.
    Type: Grant
    Filed: March 16, 2018
    Date of Patent: May 28, 2019
    Assignee: Alliance for Sustainable Energy, LLC
    Inventors: David Scott Albin, Wyatt Keith Metzger, James Michael Burst, Eric Michael Colegrove, Joel Nathan Duenow
  • Publication number: 20180277708
    Abstract: Methods for growing and using large-grain templates are provided. According to an aspect of the invention, a method includes depositing a small-grain layer of a semiconductor material; treating the small-grain layer such that the small-grain layer becomes a large-grain layer; and growing an epitaxial layer of the semiconductor material on the large-grain layer. A ratio of an average grain size of the small-grain layer to a thickness of the small-grain layer is less than 1.0, and a ratio of an average grain size of the large-grain layer to a thickness of the large-grain layer is greater than 1.5.
    Type: Application
    Filed: March 16, 2018
    Publication date: September 27, 2018
    Inventors: David Scott Albin, Wyatt Keith Metzger, James Michael Burst, Eric Michael Colegrove, Joel Nathan Duenow
  • Publication number: 20160181463
    Abstract: Methods for treating a semiconductor layer including a semiconductor material are presented. A method includes contacting at least a portion of the semiconductor material with a passivating agent. The method further includes forming a first region in the semiconductor layer by introducing a dopant into the semiconductor material; and forming a chalcogen-rich region. The method further includes forming a second region in the semiconductor layer, the second region including a dopant, wherein an average atomic concentration of the dopant in the second region is greater than an average atomic concentration of the dopant in the first region. Photovoltaic devices are also presented.
    Type: Application
    Filed: March 1, 2016
    Publication date: June 23, 2016
    Applicant: First Solar, Inc.
    Inventors: Donald Franklin Foust, Hongbo Cao, Laura Anne Clark, Robert Andrew Garber, Scott Daniel Feldman-Peabody, Wyatt Keith Metzger, Yinghui Shan, Roman Shuba
  • Patent number: 9276157
    Abstract: Methods for treating a semiconductor layer including a semiconductor material are presented. A method includes contacting at least a portion of the semiconductor material with a passivating agent. The method further includes forming a first region in the semiconductor layer by introducing a dopant into the semiconductor material; and forming a chalcogen-rich region. The method further includes forming a second region in the semiconductor layer, the second region including a dopant, wherein an average atomic concentration of the dopant in the second region is greater than an average atomic concentration of the dopant in the first region. Photovoltaic devices are also presented.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: March 1, 2016
    Assignee: First Solar, Inc.
    Inventors: Donald Franklin Foust, Hongbo Cao, Laura Anne Clark, Robert Andrew Garber, Scott Daniel Feldman-Peabody, Wyatt Keith Metzger, Yinghui Shan, Roman Shuba
  • Patent number: 9231134
    Abstract: Photovoltaic devices are presented. A photovoltaic device includes a window layer and a semiconductor layer including a semiconductor material disposed on window layer. The semiconductor layer includes a first region and a second region, the first region disposed proximate to the window layer, and the second region including a chalcogen-rich region, wherein the first region and the second region include a dopant, and an average atomic concentration of the dopant in the second region is greater than an average atomic concentration of the dopant in the first region.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: January 5, 2016
    Assignee: First Solar, Inc.
    Inventors: Donald Franklin Foust, Hongbo Cao, Laura Anne Clark, Robert Andrew Garber, Scott Daniel Feldman-Peabody, Wyatt Keith Metzger, Yinghui Shan, Roman Shuba
  • Patent number: 9117956
    Abstract: Methods for preparing an exposed surface of a p-type absorber layer of a p-n junction for coupling to a back contact in the manufacture of a thin film photovoltaic device are provided. The method can include: applying a treatment solution onto the exposed surface defined by the p-type absorber layer of cadmium telluride; and annealing the device with the p-type absorber layer in contact with the treatment solution to form a tellurium-enriched region in the p-type absorber layer at the exposed surface. The treatment solution comprises a chlorinated compound component that is substantially free from copper, a copper-containing metal salt, and a solvent.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: August 25, 2015
    Assignee: First Solar, Inc.
    Inventors: Laura Anne Clark, Tammy Jane Lucas, Wyatt Keith Metzger, Samuel H. Demtsu, David Joseph Dickerson, Laura Jean Wilson, Mehran Sadeghi
  • Publication number: 20140060635
    Abstract: Photovoltaic devices are presented. A photovoltaic device includes a window layer and a semiconductor layer including a semiconductor material disposed on window layer. The semiconductor layer includes a first region and a second region, the first region disposed proximate to the window layer, and the second region including a chalcogen-rich region, wherein the first region and the second region include a dopant, and an average atomic concentration of the dopant in the second region is greater than an average atomic concentration of the dopant in the first region.
    Type: Application
    Filed: August 31, 2012
    Publication date: March 6, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Donald Franklin Foust, Hongbo Cao, Laura Anne Clark, Robert Andrew Garber, Scott Daniel Feldman-Peabody, Wyatt Keith Metzger, Yinghui Shan, Roman Shuba
  • Publication number: 20140065763
    Abstract: Methods for treating a semiconductor layer including a semiconductor material are presented. A method includes contacting at least a portion of the semiconductor material with a passivating agent. The method further includes forming a first region in the semiconductor layer by introducing a dopant into the semiconductor material; and forming a chalcogen-rich region. The method further includes forming a second region in the semiconductor layer, the second region including a dopant, wherein an average atomic concentration of the dopant in the second region is greater than an average atomic concentration of the dopant in the first region. Photovoltaic devices are also presented.
    Type: Application
    Filed: August 31, 2012
    Publication date: March 6, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Donald Franklin Foust, Hongbo Cao, Laura Anne Clark, Robert Andrew Garber, Scott Daniel Feldman-Peabody, Wyatt Keith Metzger, Yinghui Shan, Roman Shuba
  • Publication number: 20140060634
    Abstract: Photovoltaic devices are provided that include a transparent superstrate; a transparent conductive oxide on the transparent superstrate; an n-type window layer on the transparent superstrate; a p-type absorber layer on the n-type window layer; and an inert conductive paste layer on the back surface of the p-type absorber layer. The p-type absorber layer includes cadmium telluride, and defines a back surface positioned opposite from the n-type window layer that is tellurium enriched. The inert conductive paste layer is substantially free from an acid or acid generator. Methods are also generally provided of forming such a back contact.
    Type: Application
    Filed: August 31, 2012
    Publication date: March 6, 2014
    Applicant: PRIMESTAR SOLAR, INC.
    Inventors: Laura Anne Clark, Tammy Jane Lucas, Wyatt Keith Metzger
  • Publication number: 20140065762
    Abstract: Methods for preparing an exposed surface of a p-type absorber layer of a p-n junction for coupling to a back contact in the manufacture of a thin film photovoltaic device are provided. The method can include: applying a treatment solution onto the exposed surface defined by the p-type absorber layer of cadmium telluride; and annealing the device with the p-type absorber layer in contact with the treatment solution to form a tellurium-enriched region in the p-type absorber layer at the exposed surface. The treatment solution comprises a chlorinated compound component that is substantially free from copper, a copper-containing metal salt, and a solvent.
    Type: Application
    Filed: August 31, 2012
    Publication date: March 6, 2014
    Applicant: PRIMESTAR SOLAR, INC.
    Inventors: Laura Anne Clark, Tammy Jane Lucas, Wyatt Keith Metzger, Samuel H. Demtsu, David Joseph Dickerson, Laura Jean Wilson, Mehran Sadeghi
  • Publication number: 20140060633
    Abstract: Methods for forming a back contact on a thin film photovoltaic device are provided. The method can include: applying a conductive paste onto a surface defined by a p-type absorber layer (of cadmium telluride) of a p-n junction; and, curing the conductive paste to form a conductive coating on the surface such that during curing an acid from the conductive paste reacts to enrich the surface with tellurium but is substantially consumed during curing. The conductive paste can comprises a conductive material, an optional solvent system, and a binder. Thin film photovoltaic devices are also provided, such as those that have a conductive coating that is substantially free from an acid.
    Type: Application
    Filed: August 31, 2012
    Publication date: March 6, 2014
    Applicant: PRIMESTAR SOLAR, INC.
    Inventors: Tammy Jane Lucas, Caroline Rae Corwine, Laura Anne Clark, Wyatt Keith Metzger, Mehran Sadeghi, Michael Christopher Cole, Timothy John Trentler
  • Publication number: 20120024360
    Abstract: A photovoltaic device is provided. The device comprises a transparent conducting layer. A p-type semiconductor window layer is disposed over the n-type transparent conducting layer. An n-type semiconductor layer is disposed over the p-type semiconductor window layer. An n-type cadmium telluride absorber layer is disposed between the p-type semiconductor window layer and the n-type semiconductor layer.
    Type: Application
    Filed: July 28, 2010
    Publication date: February 2, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Faisal Razi Ahmad, Bastiaan Arie Korevaar, James William Bray, Wyatt Keith Metzger