Patents by Inventor Wyn Terence Palmer

Wyn Terence Palmer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7924966
    Abstract: A clock frequency divider for odd numbered divide ratios. The divider clocks two counters in parallel from a reference clock to be divided. One counter is loaded with the divide ratio and the other counter is loaded with the divide ratio except for the least significant bit. The second counter will set a latch when its count has elapsed. The first counter will reset the latch when its count has elapsed and will reload the counters. The latch is used for the divided output, but passes through a retiming circuit. The retiming circuit delays the output edge by one reference clock edge when the least significant bit indicates an odd numbered divide ratio.
    Type: Grant
    Filed: September 14, 2009
    Date of Patent: April 12, 2011
    Assignee: Analog Devices, Inc.
    Inventors: Wyn Terence Palmer, Kenny Gentile
  • Patent number: 7924072
    Abstract: A PLL-based frequency translator provides a divider augmented with a sigma delta modulator (SDM) in a reference path. The system may include two primary functional blocks—an input PLL with its reference path containing an integer divider coupled with a SDM (a fractional frequency divider), and an output PLL with its feedback path containing an integer divider coupled with a SDM (a fractional frequency multiplier). The combination of an integer divider and an SDM yields a fractional divider that divides by N+F/M, where N is the integer portion of the division and F/M is the fractional portion of the division, with M denoting the fractional modulus. Furthermore, since it is desirable to have programmable division factors, it is beneficial to define N, F and M as integers as this simplifies a programming interface when the frequency translator is manufactured as an integrated circuit.
    Type: Grant
    Filed: February 13, 2009
    Date of Patent: April 12, 2011
    Assignee: Analog Devices, Inc.
    Inventors: Wyn Terence Palmer, Kenny Gentile
  • Patent number: 7893736
    Abstract: A multi-branch frequency translation system converts a plurality of independent input clocks to a common frequency. One of the converted clock signals is selected as a dominant clock. The remaining converted clock signals are edge-synchronized with the dominant clock. When the system selects another converted clock signal for use as the dominant clock, the newly selected signal already is edge-synchronized with the dominant clock and, therefore, switchover losses can be avoided. The dominant clock can be subject of further frequency translation processes and output from the system.
    Type: Grant
    Filed: February 13, 2009
    Date of Patent: February 22, 2011
    Assignee: Analog Devices, Inc.
    Inventors: Wyn Terence Palmer, Kenny Gentile
  • Publication number: 20100128836
    Abstract: A clock frequency divider for odd numbered divide ratios. The divider clocks two counters in parallel from a reference clock to be divided. One counter is loaded with the divide ratio and the other counter is loaded with the divide ratio except for the least significant bit. The second counter will set a latch when its count has elapsed. The first counter will reset the latch when its count has elapsed and will reload the counters. The latch is used for the divided output, but passes through a retiming circuit. The retiming circuit delays the output edge by one reference clock edge when the least significant bit indicates an odd numbered divide ratio.
    Type: Application
    Filed: September 14, 2009
    Publication date: May 27, 2010
    Inventors: Wyn Terence PALMER, Kenny GENTILE
  • Publication number: 20100123488
    Abstract: A phase locked loop (PLL) based frequency translator provides a divider augmented with a sigma delta modulator (SDM) in a reference path. The PLL is configured as an all digital PLL and includes a bang-bang phase frequency detector, digital loop filter, and digitally-controlled oscillator. The frequency translator is located in either the reference clock path for division or the PLL feedback loop path for multiplication. The SDM produces a predictable noise characteristic set with known stochastic properties which can be used to smooth any discontinuity in the bang-bang phase frequency detector. The predictable noise of the SDM will produce a dithering delay that eliminates any hard discontinuities. This allows for a bang-bang phase frequency detector based digital PLL.
    Type: Application
    Filed: September 4, 2009
    Publication date: May 20, 2010
    Applicant: ANALOG DEVICES, INC.
    Inventors: Wyn Terence PALMER, Kenny GENTILE
  • Publication number: 20100123491
    Abstract: A PLL-based frequency translator provides a divider augmented with a sigma delta modulator (SDM) in a reference path. The system may include two primary functional blocks—an input PLL with its reference path containing an integer divider coupled with a SDM (a fractional frequency divider), and an output PLL with its feedback path containing an integer divider coupled with a SDM (a fractional frequency multiplier). The combination of an integer divider and an SDM yields a fractional divider that divides by N+F/M, where N is the integer portion of the division and F/M is the fractional portion of the division, with M denoting the fractional modulus. Furthermore, since it is desirable to have programmable division factors, it is beneficial to define N, F and M as integers as this simplifies a programming interface when the frequency translator is manufactured as an integrated circuit.
    Type: Application
    Filed: February 13, 2009
    Publication date: May 20, 2010
    Applicant: Analog Devices, Inc.
    Inventors: Wyn Terence Palmer, Kenny Gentile
  • Publication number: 20100123496
    Abstract: A multi-branch frequency translation system converts a plurality of independent input clocks to a common frequency. One of the converted clock signals is selected as a dominant clock. The remaining converted clock signals are edge-synchronized with the dominant clock. When the system selects another converted clock signal for use as the dominant clock, the newly selected signal already is edge-synchronized with the dominant clock and, therefore, switchover losses can be avoided. The dominant clock can be subject of further frequency translation processes and output from the system.
    Type: Application
    Filed: February 13, 2009
    Publication date: May 20, 2010
    Applicant: Analog Devices, Inc.
    Inventors: Wyn Terence PALMER, Kenny GENTILE