Patents by Inventor Xavier Glorot
Xavier Glorot has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11954902Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for generating a final classification output for an image of eye tissue. The image is provided as input to each of one or more segmentation neural networks to obtain one or more segmentation maps of the eye tissue in the image. A respective classification input is generated from each of the segmentation maps. For each of the segmentation maps, the classification input for the segmentation map is provided as input to each of one or more classification neural networks to obtain, for each segmentation map, a respective classification output from each classification neural network. A final classification output for the image is generated from the respective classification outputs for each of the segmentation maps.Type: GrantFiled: December 8, 2020Date of Patent: April 9, 2024Assignee: Google LLCInventors: Jeffrey De Fauw, Joseph R. Ledsam, Bernardino Romera-Paredes, Stanislav Nikolov, Nenad Tomasev, Samuel Blackwell, Harry Askham, Xavier Glorot, Balaji Lakshminarayanan, Trevor Back, Mustafa Suleyman, Pearse A. Keane, Olaf Ronneberger, Julien Robert Michel Cornebise
-
Patent number: 11302446Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for predicting future adverse health events using neural networks. One of the methods includes receiving electronic health record data for a patient; generating, from the electronic health record data, an input sequence comprising a respective feature representation at each of a plurality of time window time steps, comprising, for each time window time step: determining, for each of the possible numerical features, whether the numerical feature occurred during the time window; and generating, for each of the possible numerical features, one or more presence features that identify whether the numerical feature occurred during the time window; and processing the input sequence using a neural network to generate a neural network output that characterizes a predicted likelihood that an adverse health event will occur to the patient.Type: GrantFiled: November 13, 2019Date of Patent: April 12, 2022Assignee: Google LLCInventors: Nenad Tomasev, Xavier Glorot, Jack William Rae, Michal Zielinski, Anne Mottram, Harry Askham, Andre Saraiva Nobre Dos Santos, Clemens Ludwig Meyer, Suman Ravuri, Ivan Protsyuk, Trevor Back, Joseph R. Ledsam, Shakir Mohamed
-
Publication number: 20210118198Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for generating a final classification output for an image of eye tissue. The image is provided as input to each of one or more segmentation neural networks to obtain one or more segmentation maps of the eye tissue in the image. A respective classification input is generated from each of the segmentation maps. For each of the segmentation maps, the classification input for the segmentation map is provided as input to each of one or more classification neural networks to obtain, for each segmentation map, a respective classification output from each classification neural network. A final classification output for the image is generated from the respective classification outputs for each of the segmentation maps.Type: ApplicationFiled: December 8, 2020Publication date: April 22, 2021Inventors: Jeffrey De Fauw, Joseph R. Ledsam, Bernardino Romera-Paredes, Stanislav Nikolov, Nenad Tomasev, Samuel Blackwell, Harry Askham, Xavier Glorot, Balaji Lakshminarayanan, Trevor Back, Mustafa Suleyman, Pearse A. Keane, Olaf Ronneberger, Julien Robert Michel Cornebise
-
Patent number: 10878601Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for generating a final classification output for an image of eye tissue. The image is provided as input to each of one or more segmentation neural networks to obtain one or more segmentation maps of the eye tissue in the image. A respective classification input is generated from each of the segmentation maps. For each of the segmentation maps, the classification input for the segmentation map is provided as input to each of one or more classification neural networks to obtain, for each segmentation map, a respective classification output from each classification neural network. A final classification output for the image is generated from the respective classification outputs for each of the segmentation maps.Type: GrantFiled: December 28, 2018Date of Patent: December 29, 2020Assignee: Google LLCInventors: Jeffrey De Fauw, Joseph R. Ledsam, Bernardino Romera-Paredes, Stanislav Nikolov, Nenad Tomasev, Samuel Blackwell, Harry Askham, Xavier Glorot, Balaji Lakshminarayanan, Trevor Back, Mustafa Suleyman, Pearse A. Keane, Olaf Ronneberger, Julien Robert Michel Cornebise
-
Publication number: 20200152333Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for predicting future adverse health events using neural networks. One of the methods includes receiving electronic health record data for a patient; generating, from the electronic health record data, an input sequence comprising a respective feature representation at each of a plurality of time window time steps, comprising, for each time window time step: determining, for each of the possible numerical features, whether the numerical feature occurred during the time window; and generating, for each of the possible numerical features, one or more presence features that identify whether the numerical feature occurred during the time window; and processing the input sequence using a neural network to generate a neural network output that characterizes a predicted likelihood that an adverse health event will occur to the patient.Type: ApplicationFiled: November 13, 2019Publication date: May 14, 2020Inventors: Nenad Tomasev, Xavier Glorot, Jack William Rae, Michal Zielinski, Anne Mottram, Harry Askham, Andre Saraiva Nobre Dos Santos, Clemens Ludwig Meyer, Suman Ravuri, Ivan Protsyuk, Trevor Back, Joseph R. Ledsam, Shakir Mohamed
-
Patent number: 10643131Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training a variational auto-encoder (VAE) to generate disentangled latent factors on unlabeled training images. In one aspect, a method includes receiving the plurality of unlabeled training images, and, for each unlabeled training image, processing the unlabeled training image using the VAE to determine the latent representation of the unlabeled training image and to generate a reconstruction of the unlabeled training image in accordance with current values of the parameters of the VAE, and adjusting current values of the parameters of the VAE by optimizing a loss function that depends on a quality of the reconstruction and also on a degree of independence between the latent factors in the latent representation of the unlabeled training image.Type: GrantFiled: August 5, 2019Date of Patent: May 5, 2020Assignee: DeepMind Technologies LimitedInventors: Loic Matthey-de-l'Endroit, Arka Tilak Pal, Shakir Mohamed, Xavier Glorot, Irina Higgins, Alexander Lerchner
-
Patent number: 10373055Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training a variational auto-encoder (VAE) to generate disentangled latent factors on unlabeled training images. In one aspect, a method includes receiving the plurality of unlabeled training images, and, for each unlabeled training image, processing the unlabeled training image using the VAE to determine the latent representation of the unlabeled training image and to generate a reconstruction of the unlabeled training image in accordance with current values of the parameters of the VAE, and adjusting current values of the parameters of the VAE by optimizing a loss function that depends on a quality of the reconstruction and also on a degree of independence between the latent factors in the latent representation of the unlabeled training image.Type: GrantFiled: May 19, 2017Date of Patent: August 6, 2019Assignee: Deepmind Technologies LimitedInventors: Loic Matthey-de-l'Endroit, Arka Tilak Pal, Shakir Mohamed, Xavier Glorot, Irina Higgins, Alexander Lerchner
-
Publication number: 20190139270Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for generating a final classification output for an image of eye tissue. The image is provided as input to each of one or more segmentation neural networks to obtain one or more segmentation maps of the eye tissue in the image. A respective classification input is generated from each of the segmentation maps. For each of the segmentation maps, the classification input for the segmentation map is provided as input to each of one or more classification neural networks to obtain, for each segmentation map, a respective classification output from each classification neural network. A final classification output for the image is generated from the respective classification outputs for each of the segmentation maps.Type: ApplicationFiled: December 28, 2018Publication date: May 9, 2019Inventors: Jeffrey De Fauw, Joseph R. Ledsam, Bernardino Romera-Paredes, Stanislav Nikolov, Nenad Tomasev, Samuel Blackwell, Harry Askham, Xavier Glorot, Balaji Lakshminarayanan, Trevor Back, Mustafa Suleyman, Pearse A. Keane, Olaf Ronneberger, Julien Robert Michel Cornebise
-
Patent number: 10198832Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for generating a final classification output for an image of eye tissue. The image is provided as input to each of one or more segmentation neural networks to obtain one or more segmentation maps of the eye tissue in the image. A respective classification input is generated from each of the segmentation maps. For each of the segmentation maps, the classification input for the segmentation map is provided as input to each of one or more classification neural networks to obtain, for each segmentation map, a respective classification output from each classification neural network. A final classification output for the image is generated from the respective classification outputs for each of the segmentation maps.Type: GrantFiled: June 28, 2018Date of Patent: February 5, 2019Inventors: Jeffrey De Fauw, Joseph R. Ledsam, Bernardino Romera-Paredes, Stanislav Nikolov, Nenad Tomasev, Samuel Blackwell, Harry Askham, Xavier Glorot, Balaji Lakshminarayanan, Trevor Back, Mustafa Suleyman, Pearse A. Keane, Olaf Ronneberger, Julien Robert Michel Cornebise
-
Publication number: 20190005684Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for generating a final classification output for an image of eye tissue. The image is provided as input to each of one or more segmentation neural networks to obtain one or more segmentation maps of the eye tissue in the image. A respective classification input is generated from each of the segmentation maps. For each of the segmentation maps, the classification input for the segmentation map is provided as input to each of one or more classification neural networks to obtain, for each segmentation map, a respective classification output from each classification neural network. A final classification output for the image is generated from the respective classification outputs for each of the segmentation maps.Type: ApplicationFiled: June 28, 2018Publication date: January 3, 2019Inventors: Jeffrey De Fauw, Joseph R. Ledsam, Bernardino Romera-Paredes, Stanislav Nikolov, Nenad Tomasev, Samuel Blackwell, Harry Askham, Xavier Glorot, Balaji Lakshminarayanan, Trevor Back, Mustafa Suleyman, Pearse A. Keane, Olaf Ronneberger, Julien Robert Michel Cornebise