Patents by Inventor Xiang Yu

Xiang Yu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200050201
    Abstract: Obtaining one or more parameters of an autonomous vehicle, the parameters including any of a position, path, and/or speed of the autonomous vehicle. A region of interest from a plurality of regions surrounding the autonomous vehicle is identified based on the one or more parameters. One or more sensors mounted on a sensor guide rail are controlled, based on the region of interest, to move the sensor(s) along at least a portion of the autonomous vehicle, and to capture sensor data of the region of interest and not capture sensor data from the one or more other regions of the plurality of regions surrounding the autonomous vehicle, the sensor guide rail being mounted on a surface of the autonomous vehicle. The captured sensor data is provided to a processor capable of facilitating, based on the captured sensor data of the region of interest, one or more autonomous vehicle driving actions.
    Type: Application
    Filed: August 10, 2018
    Publication date: February 13, 2020
    Inventors: Xiang Yu, Tiancheng Lou, Jun Peng, Zuoteng Chen, Nengxiu Deng
  • Patent number: 10549752
    Abstract: A lane departure detection system detects that an autonomous driving vehicle (ADV) is departing from the lane in which the ADV is driving based on sensor data captured when the ADV contact a deceleration curb such as a speed bump laid across the lane. When the ADV contacts the deceleration curb, the lane departure detection system detects and calculates an angle of a moving direction of the ADV vs a longitudinal direction of the deceleration curb. Based on the angle, the system calculates how much the moving direction of the ADV is off compared to a lane direction of the lane. The lane direction is typically substantially perpendicular to the longitudinal direction of the deceleration curb. A control command such as a speed control command and/or a steering control command is generated based on the angle to correct the moving direction of the ADV.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: February 4, 2020
    Assignees: BAIDU USA LLC, BAIDU.COM TIMES TECHNOLOGY (BEIJING) CO., LTD.
    Inventors: Fan Zhu, Qi Kong, Qi Luo, Xiang Yu, Sen Hu, Zhenguang Zhu, Xiaoxin Fu, Jiarui He, Hongye Li, Yuchang Pan, Zhongpu Xia, Chunming Zhao, Guang Yang, Jingao Wang
  • Publication number: 20200034528
    Abstract: An access control system includes a processor configured to provide a trusted execution environment isolated from a rich execution environment. A rich OS operates in the rich execution environment while a trusted OS operates in the trusted execution environment. An access monitoring module operates within the kernel of the rich OS and a trusted application operates in the trusted OS. The access monitoring module intercepts file requests directed at the file systems of the rich OS, and forwards the file requests to the trusted application. The trusted application then evaluates whether the file request is permitted and provides the access monitoring module with a response. The access monitoring module forwards the request to the file system only if the trusted application approves the request.
    Type: Application
    Filed: July 25, 2019
    Publication date: January 30, 2020
    Inventors: En-hui Yang, Jin Meng, Xiang Yu, Hongtao Zhang, Tomas Szuchewycz
  • Publication number: 20200033866
    Abstract: A computer-implemented method and a system for training a computer-based autonomous driving model used for an autonomous driving operation by an autonomous vehicle are described. The method includes: creating time-dependent three-dimensional (3D) traffic environment data using at least one of real traffic element data and simulated traffic element data; creating simulated time-dependent 3D traffic environmental data by applying a time-dependent 3D generic adversarial network (GAN) model to the created time-dependent 3D traffic environment data; and training a computer-based autonomous driving model using the simulated time-dependent 3D traffic environmental data.
    Type: Application
    Filed: July 24, 2018
    Publication date: January 30, 2020
    Inventors: Hao Song, Jun Peng, Nengxiu Deng, Sinan Xiao, Tao Qin, Tiancheng Lou, Tianyi Li, Xiang Yu, Yubo Zhang
  • Patent number: 10540679
    Abstract: Generally discussed herein are methods, systems, and apparatuses for tracking user interaction with sponsored and/or unsponsored content. A method can include receiving a tracking event packet including data fields comprising a packet identification, a tracking event identifier, a content identifier, a cost, a campaign identifier, and/or an advertiser identifier, determining whether the tracking event packet is a duplicate based on the packet identification, aggregating non-duplicate tracking event packets by advertiser identification such that packets with advertiser identifications that hash to a same value are aggregated together, and transferring aggregated tracking event packets to a first database and a second database, the first database includes data stored for analytics and the second database includes data stored for billing and campaign performance monitoring.
    Type: Grant
    Filed: November 18, 2015
    Date of Patent: January 21, 2020
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Qi Liu, Yawen Wei, Lihong Pei, Hardik N. Bati, Sanjay Sureshchandra Dubey, Waitat Peter Poon, Xiang Yu, Edward Wu
  • Publication number: 20200020212
    Abstract: A system included and a computer-implemented method performed in an autonomous-driving vehicle are described. The system performs: detecting one or more movable objects; determining a target movable object from the one or more detected objects; determining a manner of generating a directed alert notification selectively toward the target movable object; and causing a directed alert notification of the determined manner to be generated toward the target movable object.
    Type: Application
    Filed: September 23, 2019
    Publication date: January 16, 2020
    Inventors: Hao Song, Zhuo Zhang, Sinan Xiao, Xiang Yu, Tiancheng Lou, Jun Peng, Jie Hou, Tianyi Li, Yiming Liu
  • Patent number: 10534364
    Abstract: In one embodiment, an autonomous driving vehicle (ADV) speed following system determines how much and when to apply a throttle or a brake control of an ADV to maneuver the ADV around, or to avoid, obstacles of a planned route. The speed following system calculates a first torque force to accelerate the ADV, a second torque force to counteract frictional forces and wind resistances to maintain a reference speed, and a third torque force to minimize an initial difference and external disturbances thereafter between predefined target speed and actual speed of the ADV over a planned route. The speed following system determines a throttle-brake torque force based on the first, second, and third torque forces and utilizes the throttle-brake torque force to control a subsequent speed of the ADV.
    Type: Grant
    Filed: November 17, 2016
    Date of Patent: January 14, 2020
    Assignees: BAIDU USA LLC, BAIDU.COM TIMES TECHNOLOGY (BEIJING) CO., LTD.
    Inventors: Fan Zhu, Qi Kong, Xiang Yu, Sen Hu, Qi Luo, Zhenguang Zhu, Yuchang Pan, Wenli Yang, Guang Yang, Jingao Wang
  • Publication number: 20200009321
    Abstract: A wearable medical device comprising an annular housing configured to attach to a wrist of a patient. The wearable medical device having a first receptacle attached to the annular housing for receiving a first portion of a tube of an intravenous delivery system. The wearable medical device comprising a flow regulator attached to the annular housing and in contact with the first portion of the tube, where the flow regulator is configured to modify a geometric characteristic of the first portion of the tube. The wearable medical device further comprising a wireless transmitter for communicating with a user console.
    Type: Application
    Filed: July 5, 2018
    Publication date: January 9, 2020
    Inventors: Jing Du, Tzu-Chen Chao, Ci-Wei Lan, Xiang Yu Yang, Chao Zhang, Xin Fang Hao
  • Publication number: 20190391576
    Abstract: A system included and a computer-implemented method performed in one of a plurality of self-driving vehicles that are connected through a network are described. The system performs: processing image data of one or more scene images received by said one of the plurality of self-driving vehicles, to detect one or more objects included in the one or more scene images; determining a target object from the one or more detected objects at least based on the processed image data; predicting movement of the target object at least based on a current position and a current movement state of the target object; and performing a self-driving operation to drive said one of the plurality of self-driving vehicles based on the predicted movement of the target object.
    Type: Application
    Filed: September 5, 2019
    Publication date: December 26, 2019
    Inventors: Zhuo Zhang, Sinan Xiao, Xiang Yu, Hao Song, Tianyi Li, Bo Xiao, Jie Hou, Yiming Liu, Tiancheng Lou, Jun Peng
  • Publication number: 20190381999
    Abstract: Systems, methods, and non-transitory computer-readable media are provided for implementing a preemptive control for an autonomous vehicle to improve ride quality. Data from one or more sensors onboard the autonomous vehicle can be acquired. A surface imperfection of a road can be identified from the data. A next action for the autonomous vehicle can be determined based on the surface imperfection. A signal can be outputted that causes the autonomous vehicle to act in accordance with the next action.
    Type: Application
    Filed: June 15, 2018
    Publication date: December 19, 2019
    Inventors: Xiang Yu, Tiancheng Lou, Jun Peng, Nengxiu Deng, Jie Hou
  • Patent number: 10507813
    Abstract: In one embodiment, it is determined that an ADV is about to decelerate based on perception of a driving environment surrounding the ADV. In addition, if there is another vehicle that is following the ADV, a distance between the ADV and the following vehicle, as well as the speed of the following vehicle, is determined. A deceleration rate that is required for the following vehicle to avoid a collision with the ADV is determined based on the distance between the ADV and the following vehicle and the speed of the following vehicle. If the deceleration rate is greater than a predetermined threshold, a brake light and an emergency light of the ADV are turned on to warn the following vehicle that the ADV is about to rapidly decelerate as it is treated as an emergency situation.
    Type: Grant
    Filed: May 10, 2017
    Date of Patent: December 17, 2019
    Assignee: BAIDU USA LLC
    Inventors: Fan Zhu, Qi Kong, Qi Luo, Xiang Yu, Sen Hu, Guang Yang, Jingao Wang
  • Publication number: 20190379806
    Abstract: Systems, methods, and non-transitory computer readable media may be configured to characterize optical characteristics of optical elements. An optical element mount may be configured to carry an optical element. A calibration display may be configured to display a calibration object. The calibration object may include a known visual pattern. Multiple images of the calibration object may be obtained. The multiple images may be acquired using the optical element carried by the optical element mount. The multiple images may include different perspectives of the calibration object. Optical characteristics of the optical element may be characterized based on the known visual pattern and the different perspectives of the calibration object.
    Type: Application
    Filed: June 11, 2018
    Publication date: December 12, 2019
    Inventors: Yubo Zhang, Xiang Yu, Tiancheng Lou, Jun Peng, Kai Chen, Yiming Liu, Sinan Xiao, Tianyi Li, Yin Zhong, Hao Song
  • Publication number: 20190369241
    Abstract: Systems, methods, and non-transitory computer-readable media are provided for implementing a tracking camera system onboard an autonomous vehicle. Coordinate data of an object can be received. The tracking camera system actuates, based on the coordinate data, to a position such that the object is in view of the tracking camera system. Vehicle operation data of the autonomous vehicle can be received. The position of the tracking camera system can be adjusted, based on the vehicle operation data, such that the object remains in view of the tracking camera system while the autonomous vehicle is in motion. A focus of the tracking camera system can be adjusted to bring the object in focus. The tracking camera system captures image data corresponding to the object.
    Type: Application
    Filed: June 5, 2018
    Publication date: December 5, 2019
    Inventors: Kai Chen, Tiancheng Lou, Jun Peng, Xiang Yu, Zhuo Zhang, Yiming Liu, Hao Song
  • Patent number: 10497257
    Abstract: Systems and methods for vehicle surveillance include a camera for capturing target images of vehicles. An object recognition system is in communication with the camera, the object recognition system including a processor for executing a synthesizer module for generating a plurality of viewpoints of a vehicle depicted in a source image, and a domain adaptation module for performing domain adaptation between the viewpoints of the vehicle and the target images to classifying vehicles of the target images regardless of the viewpoint represented in the target images. A display is in communication with the object recognition system for displaying each of the target images with labels corresponding to the vehicles of the target images.
    Type: Grant
    Filed: August 1, 2018
    Date of Patent: December 3, 2019
    Assignee: NEC Corporation
    Inventors: Kihyuk Sohn, Luan Tran, Xiang Yu, Manmohan Chandraker
  • Publication number: 20190363205
    Abstract: The present invention provides a roof-mounted solar module integration device, a solar power vehicle and a encapsulation method for modules. The integration device comprises: a substrate in which a through-hole is formed, wherein a front side of the substrate is provided with a first trench, and a reverse side of the substrate is provided with a second trench; a solar module fixed on the front side of the substrate; a plurality of conductive bands arranged in the first trench, wherein a first end of each of the conductive bands is connected with the solar module, and a second end is led out of the through-hole to the reverse side of the substrate; and a bypass diode and an anti-reversion diode which are arranged in the second trench and connected with the second ends of the conductive bands.
    Type: Application
    Filed: September 13, 2017
    Publication date: November 28, 2019
    Inventors: Qiaohong MING, Weimin GAO, Kangcong XU, Hansong XIAO, Ting YAN, Guangxi GUO, Xiang YU, Wei ZHOU
  • Patent number: 10488205
    Abstract: In one embodiment, when an ADV is driving on a road segment, a driving parameter is recorded in response to a first control command. A difference between the first driving parameter and a target driving parameter corresponding to the first control command is determined. In response to determining that the difference exceeds a predetermined threshold, a second control command is issued to compensate the difference and cause the ADV to drive with a second driving parameter closer to the target driving parameter. A slope status of the road segment is derived based on at least the second control command. Map data of a map corresponding to the road segment of the road is updated based on the derived slope status. The updated map can be utilized to generate and issue proper control commands in view of the slope status of the road when the ADV drives on the same road subsequently.
    Type: Grant
    Filed: May 22, 2017
    Date of Patent: November 26, 2019
    Assignees: BAIDU USA LLC, BAIDU.COM TIMES TECHNOLOGY (BEIJING) CO., LTD.
    Inventors: Sen Hu, Fan Zhu, Qi Kong, Qi Luo, Xiang Yu, Zhenguang Zhu, Xiaoxin Fu, Jiarui He, Hongye Li, Yuchang Pan, Zhongpu Xia, Chunming Zhao, Guang Yang, Jingao Wang
  • Publication number: 20190354801
    Abstract: A method for implementing an unsupervised cross-domain distance metric adaptation framework with a feature transfer network for enhancing facial recognition includes recursively training a feature transfer network and automatic labeling of target domain data using a clustering method, and implementing the feature transfer network and the automatic labeling to perform a facial recognition task.
    Type: Application
    Filed: May 1, 2019
    Publication date: November 21, 2019
    Inventors: Kihyuk Sohn, Manmohan Chandraker, Xiang Yu
  • Publication number: 20190351914
    Abstract: Systems, methods, and non-transitory computer-readable media are provided for acquiring driving records from an autonomous vehicle. One or more patterns can be determined from the driving records. One or more criteria can be generated based on the one or more patterns. One or more suspicious points can be identified in the driving records by applying the one or more criteria to the driving records.
    Type: Application
    Filed: May 15, 2018
    Publication date: November 21, 2019
    Inventors: Xiang Yu, Hao Song, Sinan Xiao, Jie Hou, Tiancheng Lou, Jun Peng
  • Patent number: 10474883
    Abstract: A computer-implemented method, system, and computer program product is provided for pose-invariant facial recognition. The method includes generating, by a processor using a recognition neural network, a rich feature embedding for identity information and non-identity information for each of one or more images. The method also includes generating, by the processor using a Siamese reconstruction network, one or more pose-invariant features by employing the rich feature embedding for identity information and non-identity information. The method additionally includes identifying, by the processor, a user by employing the one or more pose-invariant features. The method further includes controlling an operation of a processor-based machine to change a state of the processor-based machine, responsive to the identified user in the one or more images.
    Type: Grant
    Filed: November 3, 2017
    Date of Patent: November 12, 2019
    Assignee: NEC Corporation
    Inventors: Xiang Yu, Kihyuk Sohn, Manmohan Chandraker, Xi Peng
  • Patent number: D872394
    Type: Grant
    Filed: May 16, 2018
    Date of Patent: January 7, 2020
    Assignee: TINECO ELECTRICAL APPLIANCES CO, LTD.
    Inventor: Xiang Yu Yang