Patents by Inventor Xiangang Ma

Xiangang Ma has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220144748
    Abstract: Disclosed by the present application is a method for producing methyl acetate by means of the carbonylation of dimethyl ether. The method comprises: passing dimethyl ether and a feed gas comprising carbon monoxide through a reactor loaded with a solid acid catalyst for reaction so as to produce methyl acetate, the molar ratio of carbon monoxide to dimethyl ether being 0.05:1-0.5:1. The described method has the advantages of a low molar ratio of carbon monoxide to dimethyl ether, a high conversion rate of carbon monoxide, a small gas circulation amount, low operation costs and so on.
    Type: Application
    Filed: February 2, 2019
    Publication date: May 12, 2022
    Inventors: Hongchao LIU, Wenliang ZHU, Zhongmin LIU, Shiping LIU, Xiangang MA, Yong LIU, Youming NI
  • Patent number: 11292761
    Abstract: A method for directly producing methyl acetate and/or acetic acid from syngas, carried out in at least two reaction zones, including: feeding a raw material containing syngas into a first reaction zone to contact and react with a metal catalyst; allowing an obtained effluent to enter a second reaction zone directly or after the addition of carbon monoxide so as to contact and react with a solid acid catalyst; separating the obtained effluent to obtain product of acetate and/or acetic acid, and optionally returning a residual part to enter the first reaction zone and/or the second reaction zone to recycle the reaction. By the method above, the product selectivity of the product of methyl acetate or acetic acid is greater than 93%, and the quantity of methyl acetate and acetic acid may be adjusted according to processing.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: April 5, 2022
    Assignee: DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Hongchao Liu, Wenliang Zhu, Zhongmin Liu, Yong Liu, Shiping Liu, Fuli Wen, Youming Ni, Xiangang Ma
  • Publication number: 20220097032
    Abstract: Provided are a molecular sieve catalyst, a preparation method therefor, an application thereof. The molecular sieve catalyst contains a modified Na-MOR molecular sieve, and the modification comprises: organic ammonium salt exchange, dealumination treatment, and ammonium ion exchange. The catalyst obtained by the method is used in dimethyl ether for one-step production of methyl acetate. The catalyst has high activity and stable performance, and the needs of industrial production can be satisfied.
    Type: Application
    Filed: February 2, 2019
    Publication date: March 31, 2022
    Inventors: Hongchao LIU, Shiping LIU, Wenliang ZHU, Zhongmin LIU, Xiangang MA, Yong LIU, Ziqiao ZHOU, Youming NI
  • Patent number: 11247959
    Abstract: Provided is a method for directly preparing dimethyl ether by synthesis gas, the method comprises: the synthesis gas is passed through a reaction zone carrying a catalyst, and reacted under the reaction conditions sufficient to convert at least a portion of the raw materials to obtain the reaction effluent comprising dimethyl ether; and the dimethyl ether is separated from the reaction effluent, wherein the catalyst is zinc aluminum spinel oxide. In the present invention, only one zinc aluminum spinel oxide catalyst is used, which can make the synthesis gas to highly selectively form dimethyl ether, the catalyst has good stability and can be regenerated. The method of the present invention realizes the production of dimethyl ether in one step by the synthesis gas, and reduces the large energy consumption problem caused by step-by-step production.
    Type: Grant
    Filed: August 1, 2018
    Date of Patent: February 15, 2022
    Assignee: Dalian Institute of Chemical Physics, Chinese Academy of Sciences
    Inventors: Youming Ni, Wenliang Zhu, Zhongmin Liu, Yong Liu, Hongchao Liu, Xiangang Ma, Shiping Liu
  • Patent number: 11225443
    Abstract: A method for directly preparing p-xylene from synthetic gas and aromatic hydrocarbon. The method includes contacting the feedstock containing synthetic gas and aromatic hydrocarbon excluding p-xylene with the catalyst in the reaction zone under reaction conditions sufficient to convert at least part of the feedstock to obtain a reaction effluent containing p-xylene; and separating p-xylene from the reaction effluent, where the catalyst includes a highly dispersed metal oxide material confined by an inert carrier, an acidic molecular sieve, and optionally at least one of graphite powder and dispersant, where in the highly dispersed metal oxide material confined by the inert carrier, the inert carrier is at least one of silicon oxide and alumina, and the content of the metal oxide in terms of metal is less than or equal to 10% by mass calculated based on the weight of the highly dispersed metal oxide material confined by the inert carrier.
    Type: Grant
    Filed: November 21, 2017
    Date of Patent: January 18, 2022
    Assignee: DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Youming Ni, Wenliang Zhu, Zhongmin Liu, Yong Liu, Zhiyang Chen, Hongchao Liu, Xiangang Ma, Shiping Liu
  • Publication number: 20210246093
    Abstract: Provided is a method for directly preparing dimethyl ether by synthesis gas, the method comprises: the synthesis gas is passed through a reaction zone carrying a catalyst, and reacted under the reaction conditions sufficient to convert at least a portion of the raw materials to obtain the reaction effluent comprising dimethyl ether; and the dimethyl ether is separated from the reaction effluent, wherein the catalyst is zinc aluminum spinel oxide. In the present invention, only one zinc aluminum spinel oxide catalyst is used, which can make the synthesis gas to highly selectively form dimethyl ether, the catalyst has good stability and can be regenerated. The method of the present invention realizes the production of dimethyl ether in one step by the synthesis gas, and reduces the large energy consumption problem caused by step-by-step production.
    Type: Application
    Filed: August 1, 2018
    Publication date: August 12, 2021
    Applicant: Dalian Institute of Chemical Physics, Chinese Academy of Sciences
    Inventors: Youming NI, Wenliang ZHU, Zhongmin LIU, Yong LIU, Hongchao LIU, Xiangang MA, Shiping LIU
  • Patent number: 11014076
    Abstract: A catalyst for synthesizing aromatic hydrocarbons, a preparation method thereof and a method for synthesizing aromatic hydrocarbons by using the catalyst. The catalyst comprises acidic molecular sieve particles and zinc-aluminum composite oxide particles. The catalyst has relatively high selectivity to aromatic hydrocarbons, particularly BTX, stable performance, and a long single-pass life.
    Type: Grant
    Filed: August 22, 2017
    Date of Patent: May 25, 2021
    Assignee: Dalian Institute of Chemical Physics, Chinese Academy of Sciences
    Inventors: Youming Ni, Wenliang Zhu, Zhongmin Liu, Zhiyang Chen, Yong Liu, Hongchao Liu, Xiangang Ma, Shiping Liu
  • Patent number: 10927051
    Abstract: Disclosed is a method for preparing aromatic hydrocarbons, particularly relates to the preparation of the aromatic hydrocarbons by passing methanol and carbon monoxide through a reactor loaded with an acidic ZSM-5 molecular sieve catalyst containing no metal additive under reaction conditions. Compared with the prior art, the method provided by the present invention can improve and stabilize the selectivity to aromatic hydrocarbons, particularly BTX, by adding carbon monoxide in methanol aromatization, and also prolongs the single-pass life of the catalyst. The performance of an inactivated catalyst is not significantly degraded after repeated regenerations. Furthermore, the catalyst preparation process omits the step of adding a metal additive, so that not only the process is simplified, but also costs are greatly reduced, and environmental protection is facilitated.
    Type: Grant
    Filed: August 22, 2017
    Date of Patent: February 23, 2021
    Assignee: Dalian Institute of Chemical Physics, Chinese Academy of Sciences
    Inventors: Youming Ni, Wenliang Zhu, Zhongmin Liu, Zhiyang Chen, Yong Liu, Hongchao Liu, Xiangang Ma, Shiping Liu
  • Patent number: 10919832
    Abstract: Provided is a method for preparing a lower unsaturated fatty acid ester, which comprises carrying out an aldol condensation reaction between dimethoxymethane (DMM) and a lower acid or ester with a molecular formula of R1—CH2—COO—R2 on an acidic molecular sieve catalyst in an inert atmosphere to obtain a lower unsaturated fatty acid or ester(CH2?C(R1)—COO—R2), wherein R1 and R2 are groups each independently selected from the group consisting of H— and C1-C4 saturated alkyl group.
    Type: Grant
    Filed: November 25, 2016
    Date of Patent: February 16, 2021
    Assignee: Dalian Institute of Chemical Physics, Chinese Academy of Sciences
    Inventors: Zhanling Ma, Wenliang Zhu, Xiangang Ma, Hongchao Liu, Yong Liu, Youming Ni, Shiping Liu, Qiwei Chen, Zhongmin Liu
  • Patent number: 10815162
    Abstract: A method for preparing aromatics from syngas, which includes a) contacting a raw material stream containing syngas with a catalyst in a reaction zone under reaction conditions sufficient to convert at least part of the raw material to obtain a reaction effluent; b) separating the reaction effluent to obtain at least a recycle stream containing gas-phase hydrocarbons having 1 to 4 carbon atoms and unconverted syngas and a liquid stream containing hydrocarbons having 5 or more carbon atoms; c) returning the recycle stream to the reaction zone; and d) separating aromatic products from the liquid stream, wherein the catalyst includes at least one of an inert carrier-confined highly dispersed metal oxide material, an acidic molecular sieve, and, optionally, graphite powder and a dispersant.
    Type: Grant
    Filed: October 29, 2018
    Date of Patent: October 27, 2020
    Assignee: DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Youming Ni, Wenliang Zhu, Zhongmin Liu, Yong Liu, Zhiyang Chen, Hongchao Liu, Xiangang Ma, Shiping Liu
  • Publication number: 20200270187
    Abstract: A method for preparing aromatics from syngas, which includes a) contacting a raw material stream containing syngas with a catalyst in a reaction zone under reaction conditions sufficient to convert at least part of the raw material to obtain a reaction effluent; b) separating the reaction effluent to obtain at least a recycle stream containing gas-phase hydrocarbons having 1 to 4 carbon atoms and unconverted syngas and a liquid stream containing hydrocarbons having 5 or more carbon atoms; c) returning the recycle stream to the reaction zone; and d) separating aromatic products from the liquid stream, wherein the catalyst includes at least one of an inert carrier-confined highly dispersed metal oxide material, an acidic molecular sieve, and, optionally, graphite powder and a dispersant.
    Type: Application
    Filed: October 29, 2018
    Publication date: August 27, 2020
    Applicant: DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Youming NI, Wenliang ZHU, Zhongmin LIU, Yong LIU, Zhiyang CHEN, Hongchao LIU, Xiangang MA, Shiping LIU
  • Publication number: 20200270188
    Abstract: A method for directly preparing p-xylene from synthetic gas and aromatic hydrocarbon. The method includes contacting the feedstock containing synthetic gas and aromatic hydrocarbon excluding p-xylene with the catalyst in the reaction zone under reaction conditions sufficient to convert at least part of the feedstock to obtain a reaction effluent containing p-xylene; and separating p-xylene from the reaction effluent, where the catalyst includes a highly dispersed metal oxide material confined by an inert carrier, an acidic molecular sieve, and optionally at least one of graphite powder and dispersant, where in the highly dispersed metal oxide material confined by the inert carrier, the inert carrier is at least one of silicon oxide and alumina, and the content of the metal oxide in terms of metal is less than or equal to 10% by mass calculated based on the weight of the highly dispersed metal oxide material confined by the inert carrier.
    Type: Application
    Filed: November 21, 2017
    Publication date: August 27, 2020
    Applicant: DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Youming NI, Wenliang ZHU, Zhongmin LIU, Yong LIU, Zhiyang CHEN, Hongchao LIU, Xiangang MA, Shiping LIU
  • Publication number: 20200239401
    Abstract: A method for directly producing methyl acetate and/or acetic acid from syngas, carried out in at least two reaction zones, including: feeding a raw material containing syngas into a first reaction zone to contact and react with a metal catalyst; allowing an obtained effluent to enter a second reaction zone directly or after the addition of carbon monoxide so as to contact and react with a solid acid catalyst; separating the obtained effluent to obtain product of acetate and/or acetic acid, and optionally returning a residual part to enter the first reaction zone and/or the second reaction zone to recycle the reaction. This provides a novel method for directly converting syngas into methyl acetate and/or acetic acid. Further, the product selectivity of the product of methyl acetate or acetic acid is greater than 93%, and the quantity of methyl acetate and acetic acid may be adjusted according to processing.
    Type: Application
    Filed: September 29, 2017
    Publication date: July 30, 2020
    Applicant: DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Hongchao LIU, Wenliang ZHU, Zhongmin LIU, Yong LIU, Shiping LIU, Fuli WEN, Youming NI, Xiangang MA
  • Publication number: 20200231523
    Abstract: A method for directly producing ethanol from syngas, carried out in three reaction zones, including: feeding a raw material containing syngas and dimethyl ether into a first reaction zone to contact with a solid acid catalyst, reacting; allowing the effluent from the first reaction zone to enter a second reaction zone to contact with a metal catalyst and react; separating the effluent from the second reaction zone to obtain product ethanol and by-product methanol; allowing by-product methanol to enter a third reaction zone to perform a dehydration reaction to obtain dimethyl ether, and allowing the obtained dimethyl ether to enter the first reaction zone to recycle the reaction. This provides a novel method for directly converting syngas to ethanol and an ethanol product can be directly produced by using syngas as a raw material.
    Type: Application
    Filed: September 29, 2017
    Publication date: July 23, 2020
    Applicant: DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Hongchao LIU, Wenliang ZHU, Zhongmin LIU, Yong LIU, Shiping LIU, Fuli WEN, Youming NI, Xiangang MA
  • Publication number: 20200062686
    Abstract: Provided is a method for preparing a lower unsaturated fatty acid ester, which comprises carrying out an aldol condensation reaction between dimethoxymethane (DMM) and a lower acid or ester with a molecular formula of R1—CH2—COO—R2 on an acidic molecular sieve catalyst in an inert atmosphere to obtain a lower unsaturated fatty acid or ester(CH2?C(R1)—COO—R2), wherein R1 and R2 are groups each independently selected from the group consisting of H- and C1-C4 saturated alkyl group.
    Type: Application
    Filed: November 25, 2016
    Publication date: February 27, 2020
    Applicant: Dalian Institute of Chemical Physics, Chinese Academy of Sciences
    Inventors: Zhanling MA, Wenliang ZHU, Xiangang MA, Hongchao LIU, Yong LIU, Youming NI, Shiping LIU, Qiwei CHEN, Zhongmin LIU
  • Publication number: 20190262811
    Abstract: A catalyst for synthesizing aromatic hydrocarbons, a preparation method thereof and a method for synthesizing aromatic hydrocarbons by using the catalyst. The catalyst comprises acidic molecular sieve particles and zinc-aluminum composite oxide particles. The catalyst has relatively high selectivity to aromatic hydrocarbons, particularly BTX, stable performance, and a long single-pass life.
    Type: Application
    Filed: August 22, 2017
    Publication date: August 29, 2019
    Applicant: Dalian Institute of Chemical Physics, Chinese Academy of Sciences
    Inventors: Youming NI, Wenliang ZHU, Zhongmin LIU, Zhiyang CHEN, Yong LIU, Hongchao LIU, Xiangang MA, Shiping LIU
  • Publication number: 20190256440
    Abstract: Disclosed is a method for preparing aromatic hydrocarbons, particularly relates to the preparation of the aromatic hydrocarbons by passing methanol and carbon monoxide through a reactor loaded with an acidic ZSM-5 molecular sieve catalyst containing no metal additive under reaction conditions. Compared with the prior art, the method provided by the present invention can improve and stabilize the selectivity to aromatic hydrocarbons, particularly BTX, by adding carbon monoxide in methanol aromatization, and also prolongs the single-pass life of the catalyst. The performance of an inactivated catalyst is not significantly degraded after repeated regenerations. Furthermore, the catalyst preparation process omits the step of adding a metal additive, so that not only the process is simplified, but also costs are greatly reduced, and environmental protection is facilitated.
    Type: Application
    Filed: August 22, 2017
    Publication date: August 22, 2019
    Applicant: Dalian Institute of Chemical Physics, Chinese Academy of Sciences
    Inventors: Youming NI, Wenliang ZHU, Zhongmin LIU, Zhiyang CHEN, Yong LIU, Hongchao LIU, Xiangang MA, Shiping LIU
  • Publication number: 20140316177
    Abstract: A modified catalyst is described which can be used as a dehydration/hydrogenation catalyst in a multistage catalyst system for the catalysed production of saturated hydrocarbons from carbon oxides and hydrogen. The modified catalyst comprises: an acidic substrate comprising an M1-zeolite or M1-silicoalumino phosphate (SAPO) catalyst, where M1 is a metal; and a modifier including a metal M2. M2 comprises an alkali metal or alkaline earth metal. In examples described the modifier includes a Group II metal, for example Ca.
    Type: Application
    Filed: April 21, 2011
    Publication date: October 23, 2014
    Applicants: DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES, BP P.L.C.
    Inventors: Qingjie Ge, Xiangang Ma, Chuanyan Fang, Hengyong Xu
  • Publication number: 20140163122
    Abstract: An integrated process for the generation of saturated C3 and higher hydrocarbons from carbon oxide(s) and hydrogen, includes the steps of: (a) feeding a gas feed stream including carbon oxide(s) and hydrogen to a two-stage reaction system comprising a first stage including a carbon oxide(s) conversion catalyst, where the feed stream is converted in the first stage to form an intermediate product stream, (b) feeding the intermediate product stream to a second stage including a dehydration/hydrogenation catalyst and (c) removing a product stream from the second stage, the product stream including saturated C3 and higher hydrocarbons. The two-stage reaction system could exhibit a high activity and selectivity to C3 and higher hydrocarbons, and the two stage reactions may be operated in different reaction conditions.
    Type: Application
    Filed: April 19, 2012
    Publication date: June 12, 2014
    Applicants: BP P.L.C., DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Qingjie Ge, Xiangang Ma, Junguo Ma, Hengyong Xu
  • Publication number: 20140151265
    Abstract: A catalyst composition is provided for use in the conversion of carbon oxide(s) to saturated hydrocarbons. The catalyst composition comprises a carbon oxide(s) conversion catalyst; and a dehydration/hydrogenation catalyst comprising a silicoalumino phosphate (SAPO) molecular sieve and a metal M, for example Pd. In one embodiment, the target saturated hydrocarbons include LPG, the SAPO comprises SAPO-5 and/or SAPO-37.
    Type: Application
    Filed: April 21, 2011
    Publication date: June 5, 2014
    Applicants: BP p.l.c., DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Qingjie Ge, Xiangang Ma, Hengyong Xu