Patents by Inventor Xianghong Yu

Xianghong Yu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11181702
    Abstract: A coupling structure includes a single mode active device and a planar optical waveguide. Specifically, the planar optical waveguide includes a silica waveguide for transmitting an optical signal, where the silica waveguide includes a coupling section and a conduction section; the coupling section is of a regular trapezoidal structure or an inverted trapezoidal structure, where a surface of the coupling section coupled to the single mode active device is a trapezoid top, and a surface of the coupling section connected with the conduction section is a trapezoid bottom; and a coupling gap is preset between the single mode active device and the planar optical waveguide.
    Type: Grant
    Filed: April 9, 2020
    Date of Patent: November 23, 2021
    Assignee: Wuhan Telecommunication Devices Co., Ltd.
    Inventors: Ben Chen, Xuerui Liang, Baiquan Hu, Chenggang Liu, Di Zhang, Yongan Fu, Liping Sun, Weidong Ma, Xianghong Yu
  • Publication number: 20200233159
    Abstract: A coupling structure includes a single mode active device and a planar optical waveguide. Specifically, the planar optical waveguide includes a silica waveguide for transmitting an optical signal, where the silica waveguide includes a coupling section and a conduction section; the coupling section is of a regular trapezoidal structure or an inverted trapezoidal structure, where a surface of the coupling section coupled to the single mode active device is a trapezoid top, and a surface of the coupling section connected with the conduction section is a trapezoid bottom; and a coupling gap is preset between the single mode active device and the planar optical waveguide.
    Type: Application
    Filed: April 9, 2020
    Publication date: July 23, 2020
    Inventors: Ben Chen, Xuerui Liang, Baiquan Hu, Chenggang Liu, Di Zhang, Yongan Fu, Liping Sun, Weidong Ma, Xianghong Yu
  • Patent number: 10656350
    Abstract: A coupling structure includes a single mode active device and a planar optical waveguide. Specifically, the planar optical waveguide includes a silica waveguide for transmitting an optical signal, where the silica waveguide includes a coupling section and a conduction section; the coupling section is of a regular trapezoidal structure or an inverted trapezoidal structure, where a surface of the coupling section coupled to the single mode active device is a trapezoid top, and a surface of the coupling section connected with the conduction section is a trapezoid bottom; and a coupling gap is preset between the single mode active device and the planar optical waveguide.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: May 19, 2020
    Assignee: Wuhan Telecommunication Devices Co., Ltd.
    Inventors: Ben Chen, Xuerui Liang, Baiquan Hu, Chenggang Liu, Di Zhang, Yongan Fu, Liping Sun, Weidong Ma, Xianghong Yu
  • Publication number: 20190086620
    Abstract: A coupling structure includes a single mode active device and a planar optical waveguide. Specifically, the planar optical waveguide includes a silica waveguide for transmitting an optical signal, where the silica waveguide includes a coupling section and a conduction section; the coupling section is of a regular trapezoidal structure or an inverted trapezoidal structure, where a surface of the coupling section coupled to the single mode active device is a trapezoid top, and a surface of the coupling section connected with the conduction section is a trapezoid bottom; and a coupling gap is preset between the single mode active device and the planar optical waveguide.
    Type: Application
    Filed: November 16, 2018
    Publication date: March 21, 2019
    Inventors: Ben Chen, Xuerui Liang, Baiquan Hu, Chenggang Liu, Di Zhang, Yongan Fu, Liping Sun, Weidong Ma, Xianghong Yu
  • Patent number: 10193631
    Abstract: The present disclosure relates to an optical module having digital diagnostic monitoring functions and a circuit and method to control the optical module. In an embodiment, a control circuit for an optical module including an optical receiving unit and an optical transmitting unit may comprise a first memory for storing a plurality of configuration parameters at predefined locations within the first memory, a second memory for storing a plurality of variables at dynamically allocated locations of the second memory, the plurality of variables including variables corresponding to a current operation status of the optical module, and an analog-to-digital converter configured to receive an analog signal corresponding to the current operation status and convert the analog signal to a digital value to be stored as the variable corresponding to the current operation status in the dynamically allocated location of the second memory.
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: January 29, 2019
    Assignees: Accelink Technologies Co., Ltd., Wuhan Telecommunication Devices Co., Ltd
    Inventors: Long Chen, Fanrong Gao, Jun Zhang, Xianghong Yu
  • Publication number: 20170242195
    Abstract: The present invention provides a multi-channel integrated optical wavelength division multiplexing/demultiplexing assembly structure, comprising a light transmitting assembly and a light receiving assembly, the light transmitting assembly consisting of a laser chip array, a coupling lens set, a wavelength division multiplexing assembly, a single coupling lens and a single-core optical fiber, wherein the wavelength division multiplexing assembly comprises an optical waveguide chip, a band-pass filter set, a full-wavelength reflection unit, and multiple segments of waveguide optical paths that are continuously distributed in the optical waveguide chip in a Z-shape or W-shape, each of the multiple segments of waveguide optical paths has an input port and an output port which are distributed on left and right sides of the optical waveguide chip, respectively, the output ports comprise a tail end port which is arranged in correspondence to the single coupling lens, the band-pass filter set covers the input ports,
    Type: Application
    Filed: December 19, 2014
    Publication date: August 24, 2017
    Inventors: Xuefeng LIN, Baiquan HU, Chenggang LIU, Xianghong YU
  • Patent number: 9482831
    Abstract: Provided are a silica-on-silicon-based hybrid integrated optoelectronic chip and a manufacturing method therefor. The hybrid integrated optoelectronic chip comprises a silicon substrate (1), wherein the surface of the silicon substrate (1) is provided with a platform (8), lug bosses (6,7) and a groove (10); a silica waveguide element (2) is arranged in the groove (10), the lug bosses (6,7) are protruded from the surface of the platform (8), and the surface of the platform (8) is provided with a discontinuous metal electrode layer (3); and the surface of the metal electrode layer (3) is provided with solder bumps (4), and an active optoelectronic chip (5) is arranged above the solder bumps (4) and the lug bosses (6, 7).
    Type: Grant
    Filed: December 26, 2013
    Date of Patent: November 1, 2016
    Assignee: WUHAN TELECOMMUNICATION DEVICES CO., LTD.
    Inventors: Liang Zhou, Xiaoge Cao, Xianghong Yu
  • Patent number: 9274789
    Abstract: An in-application upgrade method is used for optical module firmware not breaking a service. A storage area for internal programs of an optical module is divided into two areas which are respectively used for storing upgrade and application programs, and is divided into an area for backing up an interrupt vector table of a Boot program. An upper computer is in communication with the optical module. The interrupt vector table is switched, and the jump between the Boot program and the application program is achieved. The method includes extracting the contents of firmware, entering a download mode and updating the firmware. The original firmware is erased, and new firmware is written. An application mode is entered, the upper computer sending an exit command from the download mode. The upgrade program exits and a new application program is executed. The optical module operates normally without interruption.
    Type: Grant
    Filed: December 17, 2012
    Date of Patent: March 1, 2016
    Assignee: WUHAN TELECOMMUNICATION DEVICES CO., LTD.
    Inventors: Tao Yuan, Xianghong Yu, Xuguang Chen
  • Publication number: 20150355424
    Abstract: Provided are a silica-on-silicon-based hybrid integrated optoelectronic chip and a manufacturing method therefor. The hybrid integrated optoelectronic chip comprises a silicon substrate (1), wherein the surface of the silicon substrate (1) is provided with a platform (8), lug bosses (6,7) and a groove (10); a silica waveguide element (2) is arranged in the groove (10), the lug bosses (6,7) are protruded from the surface of the platform (8), and the surface of the platform (8) is provided with a discontinuous metal electrode layer (3); and the surface of the metal electrode layer (3) is provided with solder bumps (4), and an active optoelectronic chip (5) is arranged above the solder bumps (4) and the lug bosses (6, 7).
    Type: Application
    Filed: December 26, 2013
    Publication date: December 10, 2015
    Inventors: Liang ZHOU, Xiaoge CAO, Xianghong YU
  • Publication number: 20150154017
    Abstract: An in-application upgrade method is used for optical module firmware not breaking a service. A storage area for internal programs of an optical module is divided into two areas which are respectively used for storing upgrade and application programs, and is divided into an area for backing up an interrupt vector table of a Boot program. An upper computer is in communication with the optical module. The interrupt vector table is switched, and the jump between the Boot program and the application program is achieved. The method includes extracting the contents of firmware, entering a download mode and updating the firmware. The original firmware is erased, and new firmware is written. An application mode is entered, the upper computer sending an exit command from the download mode. The upgrade program exits and a new application program is executed. The optical module operates normally without interruption.
    Type: Application
    Filed: December 17, 2012
    Publication date: June 4, 2015
    Inventors: Tao Yuan, Xianghong Yu, Xuguang Chen