Patents by Inventor Xiangyang Huang

Xiangyang Huang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11917427
    Abstract: A twin beam base station antenna includes a first array that has a plurality of columns of first frequency band radiating elements, the first array configured to form a first antenna beam that provides coverage throughout a first sub-sector of a three-sector base station. The radiating elements in a first of the columns in the first array have a first azimuth boresight pointing direction and the radiating elements in a second of the columns in the first array have a second azimuth boresight pointing direction that is offset from the first azimuth boresight pointing direction by at least 10°. The radiating elements in the second of the columns in the first array are electrically steered.
    Type: Grant
    Filed: January 25, 2023
    Date of Patent: February 27, 2024
    Assignee: CommScope Technologies LLC
    Inventors: Bo Wu, Xiangyang Ai, Peter Bisiules, Hangsheng Wen, Joy Huang
  • Patent number: 10257160
    Abstract: The present invention relates to a method and system for resolving Internet of Things heterogeneous identifiers. The method provides a special description mechanism for a resolution protocol for an Internet of Things heterogeneous identifiers, which not only forms a heterogeneous identification coding rule corresponding to the heterogeneous identifier, but also accordingly forms a corresponding heterogeneous identification resolution protocol rule, and conducts registration binding on the above-mentioned rules and the corresponding Internet of Things heterogeneous identifier. By resolving and querying standard identification code corresponding to the Internet of Things heterogeneous identification, the disclosed method can obtain the bound heterogeneous identification coding rule and heterogeneous identification resolution protocol rule.
    Type: Grant
    Filed: December 18, 2013
    Date of Patent: April 9, 2019
    Assignee: Computer Network Information Center, Chinese Academy of Sciences
    Inventors: Ning Kong, Shuo Shen, Bing Liu, Xiaodong Li, Xiangyang Huang
  • Publication number: 20160182446
    Abstract: The present invention relates to a method and system for resolving Internet of Things heterogeneous identifiers. The method provides a special description mechanism for a resolution protocol for an Internet of Things heterogeneous identifiers, which not only forms a heterogeneous identification coding rule corresponding to the heterogeneous identifier, but also accordingly forms a corresponding heterogeneous identification resolution protocol rule, and conducts registration binding on the above-mentioned rules and the corresponding Internet of Things heterogeneous identifier. By resolving and querying standard identification code corresponding to the Internet of Things heterogeneous identification, the disclosed method can obtain the bound heterogeneous identification coding rule and heterogeneous identification resolution protocol rule.
    Type: Application
    Filed: December 18, 2013
    Publication date: June 23, 2016
    Inventors: Ning Kong, Shuo Shen, Bing Liu, Xiaodong Li, Xiangyang Huang
  • Patent number: 8968589
    Abstract: A composite material comprises a filled skutterudite matrix of formula (I) IyCo4Sb12 in which (I) represents at least one of Yb, Eu, Ce, La, Nd, Ba and Sr, 0.05?y<1; and GaSb particles within the filled skutterudite matrix, wherein the composite material comprises 0.05-5 mol % GaSb particles. Compared with conventional materials, the composite material exhibits a substantially increased Seebeck coefficient, a slightly decreased overall thermal conductivity, and a substantially increased thermoelectric performance index across the whole temperature zone from the low temperature end to the high temperature end, as well as a greatly enhanced thermoelectric efficiency.
    Type: Grant
    Filed: September 23, 2010
    Date of Patent: March 3, 2015
    Assignee: Shanghai Institute of Ceramics, Chinese Academy of Sciences
    Inventors: Lidong Chen, Xihong Chen, Lin He, Xiangyang Huang, Zhen Xiong, Wenqing Zhang
  • Publication number: 20130323110
    Abstract: The disclosure relates to a p-type skutterudite material and a method of making the same, comprising providing a p-type skutterudite material having a general formula: IyFe4-xMxSb12/z(J) wherein I represents one or more filling atoms in a skutterudite phase, the total filling amount y satisfying 0.01?y?1; M represents one or more dopant atoms with the doping amount x satisfying 0?x?4; J represents one or more second phases with the molar ratio z satisfying 0?z?0.5; wherein second phase precipitates are dispersed throughout the skutterudite phase.
    Type: Application
    Filed: August 10, 2011
    Publication date: December 5, 2013
    Inventors: Monika Backhaus-Ricoult, Lidong Chen, Lin He, Xiangyang Huang, Ruiheng Liu, Pengfei Qiu, Jiong Yang, Wenqing Zhang
  • Patent number: 8389974
    Abstract: A multiple-wavelength opto-electronic device may include a substrate and a plurality of active optical devices carried by the substrate and operating at different respective wavelengths. Each optical device may include a superlattice comprising a plurality of stacked groups of layers, and each group of layers may include a plurality of stacked semiconductor monolayers defining a base semiconductor portion and at least one non-semiconductor monolayer thereon.
    Type: Grant
    Filed: January 31, 2011
    Date of Patent: March 5, 2013
    Assignee: Mears Technologies, Inc.
    Inventors: Robert J. Mears, Robert John Stephenson, Marek Hytha, Ilija Dukovski, Jean Augustin Chan Sow Fook Yiptong, Samed Halilov, Xiangyang Huang
  • Publication number: 20130043439
    Abstract: A composite material comprises a filled skutterudite matrix of formula (I) IyCo4Sb12 in which (I) represents at least one of Yb, Eu, Ce, La, Nd, Ba and Sr, 0.05?y<1; and GaSb particles within the filled skutterudite matrix, wherein the composite material comprises 0.05-5 mol % GaSb particles. Compared with conventional materials, the composite material exhibits a substantially increased Seebeck coefficient, a slightly decreased overall thermal conductivity, and a substantially increased thermoelectric performance index across the whole temperature zone from the low temperature end to the high temperature end, as well as a greatly enhanced thermoelectric efficiency.
    Type: Application
    Filed: September 23, 2010
    Publication date: February 21, 2013
    Inventors: Lidong Chen, Xihong Chen, Lin He, Xiangyang Huang, Zhen Xiong, Wenqing Zhang
  • Patent number: 8333912
    Abstract: A process for making a composite material and the composite materials having thermoelectric properties.
    Type: Grant
    Filed: July 9, 2010
    Date of Patent: December 18, 2012
    Assignees: Corning Incorporated, Shanghai Institute of Ceramics
    Inventors: Lidong Chen, Monika Backhaus-Ricoult, Lin He, Zhen Xiong, Xihong Chen, Xiangyang Huang
  • Publication number: 20120164416
    Abstract: A coating for thermoelectric materials includes a thermoelectric layer having a thermoelectric material, a metal coating of one or more layers forming a surface in contact with the thermoelectric layer and an opposing surface, and a metal oxide coating of one or more layers including metal oxides, wherein the metal oxide coating forms a surface in contact with the opposing surface. A device comprises the material and a process for fabricating the same.
    Type: Application
    Filed: July 27, 2010
    Publication date: June 28, 2012
    Inventors: Lin He, Lidong Chen, Xiangyang Huang, Xiaoya Li, Xugui Xia
  • Publication number: 20110193063
    Abstract: A multiple-wavelength opto-electronic device may include a substrate and a plurality of active optical devices carried by the substrate and operating at different respective wavelengths. Each optical device may include a superlattice comprising a plurality of stacked groups of layers, and each group of layers may include a plurality of stacked semiconductor monolayers defining a base semiconductor portion and at least one non-semiconductor monolayer thereon.
    Type: Application
    Filed: January 31, 2011
    Publication date: August 11, 2011
    Applicant: MEARS TECHNOLOGIES, INC.
    Inventors: Robert J. Mears, Robert John Stephenson, Marek Hytha, Ilija Dukovski, Jean Augustin Chan Sow Fook Yiptong, Samed Halilov, Xiangyang Huang
  • Patent number: 7880161
    Abstract: A multiple-wavelength opto-electronic device may include a substrate and a plurality of active optical devices carried by the substrate and operating at different respective wavelengths. Each optical device may include a superlattice comprising a plurality of stacked groups of layers, and each group of layers may include a plurality of stacked semiconductor monolayers defining a base semiconductor portion and at least one non-semiconductor monolayer thereon.
    Type: Grant
    Filed: February 16, 2007
    Date of Patent: February 1, 2011
    Assignee: Mears Technologies, Inc.
    Inventors: Robert J. Mears, Robert John Stephenson, Marek Hytha, Ilija Dukovski, Jean Augustin Chan Sow Fook Yiptong, Samed Halilov, Xiangyang Huang
  • Publication number: 20110006249
    Abstract: A process for making a composite material and the composite materials having thermoelectric properties
    Type: Application
    Filed: July 9, 2010
    Publication date: January 13, 2011
    Inventors: Lidong Chen, Monika Backhaus-Ricoult, Lin He, Zhen Xiong, Xihong Chen, Xiangyang Huang
  • Patent number: 7863066
    Abstract: A method for making a multiple-wavelength opto-electronic device which may include providing a substrates and forming a plurality of active optical devices to be carried by the substrate and operating at different respective wavelengths. Moreover, each optical device may include a superlattice comprising a plurality of stacked groups of layers, and each group of layers may include a plurality of stacked semiconductor monolayers defining a base semiconductor portion and at least one non-semiconductor monolayer thereon.
    Type: Grant
    Filed: February 16, 2007
    Date of Patent: January 4, 2011
    Assignee: Mears Technologies, Inc.
    Inventors: Robert J. Mears, Robert John Stephenson, Marek Hytha, Ilija Dukovski, Jean Augustin Chan Sow Fook Yiptong, Samed Halilov, Xiangyang Huang
  • Publication number: 20100270535
    Abstract: A method for making an electronic device may include forming a selectively polable superlattice comprising a plurality of stacked groups of layers. Each group of layers of the selectively polable superlattice may include a plurality of stacked semiconductor monolayers defining a semiconductor base portion and at least one non-semiconductor monolayer thereon. The at least one non-semiconductor monolayer may be constrained within a crystal lattice of adjacent silicon portions, and at least some semiconductor atoms from opposing base semiconductor portions may be chemically bound together through the at least one non-semiconductor monolayer therebetween. The method may further include coupling at least one electrode to the selectively polable superlattice for selective poling thereof.
    Type: Application
    Filed: May 18, 2010
    Publication date: October 28, 2010
    Applicant: Mears Technologies, Inc.
    Inventors: Samed Halilov, Xiangyang Huang, Ilija Dukovski, Jean Augustin Chan Sow Fook Yiptong, Robert J. Mears, Marek Hytha, Robert John Stephenson
  • Patent number: 7718996
    Abstract: A semiconductor device may include a first monocrystalline layer comprising a first material having a first lattice constant. A second monocrystalline layer may include a second material having a second lattice constant different than the first lattice constant. The device may also include a lattice matching layer between the first and second monocrystalline layers and comprising a superlattice. The superlattice may include a plurality of groups of layers, and each group of layers may include a plurality of stacked semiconductor monolayers defining a semiconductor base portion and at least one non-semiconductor monolayer thereon. The at least one non-semiconductor monolayer may be constrained within a crystal lattice of adjacent base semiconductor portions, and at least some semiconductor atoms from opposing base semiconductor portions may be chemically bound together through the at least one non-semiconductor monolayer therebetween.
    Type: Grant
    Filed: February 21, 2007
    Date of Patent: May 18, 2010
    Assignee: Mears Technologies, Inc.
    Inventors: Ilija Dukovski, Robert John Stephenson, Jean Augustin Chan Sow Fook Yiptong, Samed Halilov, Robert J. Mears, Xiangyang Huang, Marek Hytha
  • Patent number: 7700447
    Abstract: A method for making a semiconductor device which may include forming a first monocrystalline layer comprising a first material having a first lattice constant, a second monocrystalline layer including a second material having a second lattice constant different than the first lattice constant, and a lattice matching layer between the first and second monocrystalline layers and comprising a superlattice. More particularly, the superlattice may include a plurality of groups of layers, and each group of layers may include a plurality of stacked semiconductor monolayers defining a semiconductor base portion and at least one non-semiconductor monolayer thereon. Furthermore, the at least one non-semiconductor monolayer may be constrained within a crystal lattice of adjacent base semiconductor portions, and at least some semiconductor atoms from opposing base semiconductor portions may be chemically bound together through the at least one non-semiconductor monolayer therebetween.
    Type: Grant
    Filed: February 21, 2007
    Date of Patent: April 20, 2010
    Assignee: Mears Technologies, Inc.
    Inventors: Ilija Dukovski, Robert John Stephenson, Jean Augustin Chan Sow Fook Yiptong, Samed Halilov, Robert J. Mears, Xiangyang Huang, Marek Hytha
  • Patent number: 7625767
    Abstract: A method is for making a spintronic device and may include forming at least one superlattice and at least one electrical contact coupled thereto, with the at least one superlattice including a plurality of groups of layers. Each group of layers may include a plurality of stacked base semiconductor monolayers defining a base semiconductor portion having a crystal lattice, at least one non-semiconductor monolayer constrained within the crystal lattice of adjacent base semiconductor portions, and a spintronic dopant. The spintronic dopant may be constrained within the crystal lattice of the base semiconductor portion by the at least one non-semiconductor monolayer. In some embodiments, the repeating structure of a superlattice may not be needed.
    Type: Grant
    Filed: March 16, 2007
    Date of Patent: December 1, 2009
    Assignee: Mears Technologies, Inc.
    Inventors: Xiangyang Huang, Samed Halilov, Jean Augustin Chan Sow Fook Yiptong, Ilija Dukovski, Marek Hytha, Robert J. Mears
  • Patent number: 7517702
    Abstract: A method for making an electronic device may include forming a poled superlattice comprising a plurality of stacked groups of layers and having a net electrical dipole moment. Each group of layers of the poled superlattice may include a plurality of stacked semiconductor monolayers defining a base semiconductor portion and at least one non-semiconductor monolayer thereon. The at least one non-semiconductor monolayer may be constrained within a crystal lattice of adjacent base semiconductor portions, and at least some semiconductor atoms from opposing base semiconductor portions may be chemically bound together through the at least one non-semiconductor monolayer therebetween. The method may further include coupling at least one electrode to the poled superlattice.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: April 14, 2009
    Assignee: MEARS Technologies, Inc.
    Inventors: Samed Halilov, Xiangyang Huang, Ilija Dukovski, Jean Augustin Chan Sow Fook Yiptong, Robert J. Mears, Marek Hytha, Robert John Stephenson
  • Patent number: 7446002
    Abstract: A method for making a semiconductor device may include forming a superlattice comprising a plurality of stacked groups of layers adjacent a substrate. Each group of layers of the superlattice may include a plurality of stacked base semiconductor monolayers defining a base semiconductor portion, and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. The method may further include forming a high-K dielectric layer on the electrode layer, and forming an electrode layer on the high-K dielectric layer and opposite the superlattice.
    Type: Grant
    Filed: May 25, 2005
    Date of Patent: November 4, 2008
    Assignee: MEARS Technologies, Inc.
    Inventors: Robert J. Mears, Marek Hytha, Scott A. Kreps, Robert John Stephenson, Jean Augustin Chan Sow Fook Yiptong, Ilija Dukovski, Kalipatnam Vivek Rao, Samed Halilov, Xiangyang Huang
  • Publication number: 20080197340
    Abstract: A multiple-wavelength opto-electronic device may include a substrate and a plurality of active optical devices carried by the substrate and operating at different respective wavelengths. Each optical device may include a superlattice comprising a plurality of stacked groups of layers, and each group of layers may include a plurality of stacked semiconductor monolayers defining a base semiconductor portion and at least one non-semiconductor monolayer thereon.
    Type: Application
    Filed: February 16, 2007
    Publication date: August 21, 2008
    Applicant: RJ Mears, LLC
    Inventors: Robert J. Mears, Robert John Stephenson, Marek Hytha, Ilija Dukovski, Jean Augustin Chan Sow Fook Yiptong, Samed Halilov, Xiangyang Huang