Patents by Inventor Xiao Guan Radstrom

Xiao Guan Radstrom has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11971409
    Abstract: A method of preparing an antibody therapeutic is provided comprising: (a) providing a dissociated cell sample from at least one solid tumor sample obtained from a patient; (b) loading the dissociated cell sample into a microfluidic device having a flow region and at least one isolation region fluidically connected to the flow region; (c) moving at least one B cell from the dissociated cell sample into at least one isolation region in the microfluidic device, thereby obtaining at least one isolated B cell; and (d) using the microfluidic device to identify at least one B cell that produces antibodies capable of binding to cancer cells. The cancer cells can be the patient's own cancer cells. Also provided are methods of treating patients, methods of labeling or detecting cancer, engineered T or NK cells comprising antibodies or fragments thereof, and engineered antibody constructs.
    Type: Grant
    Filed: June 4, 2020
    Date of Patent: April 30, 2024
    Assignee: Bruker Cellular Analysis, Inc.
    Inventors: Kevin T. Chapman, Mark P. White, Xiaohua Wang, Minha Park, Guido K. Stadler, Randall D. Lowe, Jr., Xiao Guan Radstrom, Jason M. McEwen, Gang F. Wang, George L. Fox, Peggy A. Radel
  • Publication number: 20230100306
    Abstract: Bioreactors configured to scale-up the production of greater quantities of cells at relatively low cost are provided. These bioreactors may be utilized in the production of large-scale quantities of cell-based meat and cell-based fat. The bioreactors may be reusable and may have a high surface area-to-volume ratio for adherent cell expansion. The bioreactors may be capable of yielding a large number of adherent cells per bioreactor unit.
    Type: Application
    Filed: September 1, 2022
    Publication date: March 30, 2023
    Inventors: George C. ENGELMAYR, Jr., Ilan Eitan FISCHER, Andre BERGERON, Saam SHAHROKHI, William C. PATON, Viktor MACIAG, Xiao Guan RADSTROM, Amelia BEVILLE, Robert YAMAN
  • Patent number: 11273177
    Abstract: The present disclosure provides methods of preparing tumor infiltrating cells engineered to express a pro-inflammatory polypeptide. The pro-inflammatory polypeptide is expressed from the tumor infiltrating cell to counter a generally immunosuppressive state in and around tumors resulting from an imbalance between the number and activation state of immune effector cells versus those of suppressor cells. Delivering the proinflammatory polypeptide via expression from the TICs, as distinct from systemic administration, reduces side effects from increased inflammation at sides remote from a tumor to be treated.
    Type: Grant
    Filed: April 14, 2017
    Date of Patent: March 15, 2022
    Assignee: Berkeley Lights, Inc.
    Inventors: Kevin T Chapman, Xiaohua Wang, Xiao Guan Radstrom, Yelena Bronevetsky, Guido K Stadler, Gregory G Lavieu, Annamaria Mocciaro
  • Patent number: 11103870
    Abstract: Methods are described herein for isolating clonal populations of cells having a defined genetic modification. The methods are performed, at least in part, in a microfluidic device comprising one or more sequestration pens. The methods include the steps of: maintaining individual cells (or precursors thereof) that have undergone a genomic editing process in corresponding sequestration pens of a microfluidic device; expanding the individual cells into respective clonal populations of cells; and detecting, in one or more cells of each clonal population, the presence of a first nucleic acid sequence that is indicative of the presence of an on-target genome edit in the clonal population of cells. Also described are methods of performing genome editing within a microfluidic device, and compositions comprising one or more clonal populations of cells generated according to the methods disclosed herein.
    Type: Grant
    Filed: January 28, 2019
    Date of Patent: August 31, 2021
    Assignee: Berkeley Lights, Inc.
    Inventors: Gregory G. Lavieu, Annamaria Mocciaro, Xiao Guan Radstrom, Jason M. McEwen, Magali Soumillon, J. Tanner Nevill, Volker L. S. Kurz, Patricia A. Dyck, Ravi K. Ramenani
  • Publication number: 20200400669
    Abstract: A method of preparing an antibody therapeutic is provided comprising: (a) providing a dissociated cell sample from at least one solid tumor sample obtained from a patient; (b) loading the dissociated cell sample into a microfluidic device having a flow region and at least one isolation region fluidically connected to the flow region; (c) moving at least one B cell from the dissociated cell sample into at least one isolation region in the microfluidic device, thereby obtaining at least one isolated B cell; and (d) using the microfluidic device to identify at least one B cell that produces antibodies capable of binding to cancer cells. The cancer cells can be the patient's own cancer cells. Also provided are methods of treating patients, methods of labeling or detecting cancer, engineered T or NK cells comprising antibodies or fragments thereof, and engineered antibody constructs.
    Type: Application
    Filed: June 4, 2020
    Publication date: December 24, 2020
    Applicant: Berkeley Lights, Inc.
    Inventors: Kevin T. Chapman, Mark P. White, Xiaohua Wang, Minha Park, Guido K. Stadler, Randall D. Lowe, JR., Xiao Guan Radstrom, Jason M. McEwen, Gang F. Wang, George L. Fox, Peggy A. Radel
  • Patent number: 10712344
    Abstract: A method of preparing an antibody therapeutic is provided comprising: (a) providing a dissociated cell sample from at least one solid tumor sample obtained from a patient; (b) loading the dissociated cell sample into a microfluidic device having a flow region and at least one isolation region fluidically connected to the flow region; (c) moving at least one B cell from the dissociated cell sample into at least one isolation region in the microfluidic device, thereby obtaining at least one isolated B cell; and (d) using the microfluidic device to identify at least one B cell that produces antibodies capable of binding to cancer cells. The cancer cells can be the patient's own cancer cells. Also provided are methods of treating patients, methods of labeling or detecting cancer, engineered T or NK cells comprising antibodies or fragments thereof, and engineered antibody constructs.
    Type: Grant
    Filed: January 13, 2017
    Date of Patent: July 14, 2020
    Assignee: Berkeley Lights, Inc.
    Inventors: Kevin T. Chapman, George L. Fox, Peggy A. Radel, Mark P. White, Xiaohua Wang, Minha Park, Guido K. Stadler, Randall D. Lowe, Jr., Xiao Guan Radstrom, Jason M. McEwen, Gang F. Wang
  • Publication number: 20190217297
    Abstract: Methods are described herein for isolating clonal populations of cells having a defined genetic modification. The methods are performed, at least in part, in a microfluidic device comprising one or more sequestration pens. The methods include the steps of: maintaining individual cells (or precursors thereof) that have undergone a genomic editing process in corresponding sequestration pens of a microfluidic device; expanding the individual cells into respective clonal populations of cells; and detecting, in one or more cells of each clonal population, the presence of a first nucleic acid sequence that is indicative of the presence of an on-target genome edit in the clonal population of cells. Also described are methods of performing genome editing within a microfluidic device, and compositions comprising one or more clonal populations of cells generated according to the methods disclosed herein.
    Type: Application
    Filed: January 28, 2019
    Publication date: July 18, 2019
    Applicant: Berkeley Lights, Inc.
    Inventors: Gregory G. Lavieu, Annamaria Mocciaro, Xiao Guan Radstrom, Jason M. McEwen, Magali Soumillon, J. Tanner Nevill, Volker L.S. Kurz, Patricia A. Dyck, Ravi K. Ramenani
  • Patent number: 10239058
    Abstract: Methods are described herein for isolating clonal populations of cells having a defined genetic modification. The methods are performed, at least in part, in a microfluidic device comprising one or more sequestration pens. The methods include the steps of: maintaining individual cells (or precursors thereof) that have undergone a genomic editing process in corresponding sequestration pens of a microfluidic device; expanding the individual cells into respective clonal populations of cells; and detecting, in one or more cells of each clonal population, the presence of a first nucleic acid sequence that is indicative of the presence of an on-target genome edit in the clonal population of cells. Also described are methods of performing genome editing within a microfluidic device, and compositions comprising one or more clonal populations of cells generated according to the methods disclosed herein.
    Type: Grant
    Filed: November 2, 2017
    Date of Patent: March 26, 2019
    Assignee: Berkeley Lights, Inc.
    Inventors: Gregory G. Lavieu, Annamaria Mocciaro, Xiao Guan Radstrom, Jason M. McEwen, Magali Soumillon, J. Tanner Nevill, Volker L. S. Kurz, Patricia A. Dyck, Ravi K. Ramenani
  • Publication number: 20180147576
    Abstract: Methods are described herein for isolating clonal populations of cells having a defined genetic modification. The methods are performed, at least in part, in a microfluidic device comprising one or more sequestration pens. The methods include the steps of: maintaining individual cells (or precursors thereof) that have undergone a genomic editing process in corresponding sequestration pens of a microfluidic device; expanding the individual cells into respective clonal populations of cells; and detecting, in one or more cells of each clonal population, the presence of a first nucleic acid sequence that is indicative of the presence of an on-target genome edit in the clonal population of cells. Also described are methods of performing genome editing within a microfluidic device, and compositions comprising one or more clonal populations of cells generated according to the methods disclosed herein.
    Type: Application
    Filed: November 2, 2017
    Publication date: May 31, 2018
    Inventors: Gregory G. Lavieu, Annamaria Mocciaro, Xiao Guan Radstrom, Jason M. McEwen, Magali Soumillon, J. Tanner Nevill, Volker L.S. Kurz, Patricia A. Dyck, Ravi K. Ramenani
  • Publication number: 20170224734
    Abstract: The present disclosure provides methods of preparing tumor infiltrating cells engineered to express a pro-inflammatory polypeptide. The pro-inflammatory polypeptide is expressed from the tumor infiltrating cell to counter a generally immunosuppressive state in and around tumors resulting from an imbalance between the number and activation state of immune effector cells versus those of suppressor cells. Delivering the proinflammatory polypeptide via expression from the TICs, as distinct from systemic administration, reduces side effects from increased inflammation at sides remote from a tumor to be treated.
    Type: Application
    Filed: April 14, 2017
    Publication date: August 10, 2017
    Inventors: Kevin T Chapman, Xiaohua Wang, Xiao Guan Radstrom, Yelena Bronevetsky, Guido K Stadler, Gregory G Levieu, Annamaria Mocciaro