Patents by Inventor Xiao-Mei Zhao

Xiao-Mei Zhao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8012382
    Abstract: Chemically or biochemically active agents or other species are patterned on a substrate surface by providing a micromold having a contoured surface and forming, on a substrate surface, a chemically or biochemically active agent or fluid precursor of a structure. A chemically or biochemically active agent or fluid precursor also can be transferred from indentations in an applicator to a substrate surface. The substrate surface can be planar or non-planar. Fluid precursors of polymeric structures, inorganic ceramics and salts, and the like can be used to form patterned polymeric articles, inorganic salts and ceramics, reactive ion etch masks, etc. at the surface. The articles can be formed in a pattern including a portion having a lateral dimension of less than about 1 millimeter or smaller. The indentation pattern of the applicator can be used to transfer separate, distinct chemically or biochemically active agents or fluid precursors to separate, isolated regions of a substrate surface.
    Type: Grant
    Filed: March 4, 2009
    Date of Patent: September 6, 2011
    Assignee: President and Fellows of Harvard College
    Inventors: Enoch Kim, Younan Xia, Milan Mrksich, Rebecca J. Jackman, Xiao-Mei Zhao, Stephen P. Smith, Christian Marzolin, Mara G. Prentiss, George M. Whitesides
  • Publication number: 20090266418
    Abstract: The present invention includes a template, an optoelectronic device and methods for making the same. The optoelectronic device includes a first substrate; a first electrode disposed on the first substrate; a first interdigitating, nano-structured charge-transfer molded material (e.g., a polymer) with a first electron affinity disposed on the first electrode; a second interdigitating, nano-structured charge-transfer material (e.g., single molecules, quantum dots, or particles) with a second electron affinity disposed on the first interdigitating, nano-structured charge-transfer material; a second electrode disposed in the second interdigitating, nano-structured charge-transfer material; and a second substrate disposed on the second electrode.
    Type: Application
    Filed: February 18, 2009
    Publication date: October 29, 2009
    Applicant: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: Wenchuang Hu, Mukti N. Aryal, Fatih Buyukserin, Jinming Gao, Xiao-Mei Zhao
  • Publication number: 20090196826
    Abstract: The present invention includes compositions, methods and pharmaceutical compositions formed by template-directed polymer molding by contacting a porous template with one or more layers of polymeric material coated on a release layer coated on a substrate, applying pressure to the porous template, the substrates or both and separating the porous template from the polymer material to form one or more polymer nonspherical nanostructures with one or more layers on the substrate. The template includes one or more nonspherical nanostructure features. The size and shape of the one or more single- or multi-layer polymeric nonspherical nanostructures are controlled by the one or more nonspherical nanostructure features and the polymer material optionally including one or more active agents with or without retardants, dyes, etc.
    Type: Application
    Filed: December 17, 2008
    Publication date: August 6, 2009
    Applicant: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: Jinming Gao, Wenchuang Hu, Mukti N. Aryal, Fatih Buyukserin, Xiao-Mei Zhao
  • Publication number: 20090166903
    Abstract: Chemically or biochemically active agents or other species are patterned on a substrate surface by providing a micromold having a contoured surface and forming, on a substrate surface, a chemically or biochemically active agent or fluid precursor of a structure. A chemically or biochemically active agent or fluid precursor also can be transferred from indentations in an applicator to a substrate surface. The substrate surface can be planar or non-planar. Fluid precursors of polymeric structures, inorganic ceramics and salts, and the like can be used to form patterned polymeric articles, inorganic salts and ceramics, reactive ion etch masks, etc. at the surface. The articles can be formed in a pattern including a portion having a lateral dimension of less than about 1 millimeter or smaller. The indentation pattern of the applicator can be used to transfer separate, distinct chemically or biochemically active agents or fluid precursors to separate, isolated regions of a substrate surface.
    Type: Application
    Filed: March 4, 2009
    Publication date: July 2, 2009
    Applicant: President and Fellows of Harvard College
    Inventors: Enoch Kim, Younan Xia, Milan Mrksich, Rebecca J. Jackman, Xiao-Mei Zhao, Stephen P. Smith, Mara G. Prentiss, George M. Whitesides, Christian Marzolin
  • Publication number: 20080116608
    Abstract: Chemically or biochemically active agents or other species are patterned on a substrate surface by providing a micromold having a contoured surface and forming, on a substrate surface, a chemically or biochemically active agent or fluid precursor of a structure. A chemically or biochemically active agent or fluid precursor also can be transferred from indentations in an applicator to a substrate surface. The substrate surface can be planar or non-planar. Fluid precursors of polymeric structures, inorganic ceramics and salts, and the like can be used to form patterned polymeric articles, inorganic salts and ceramics, reactive ion etch masks, etc. at the surface. The articles can be formed in a pattern including a portion having a lateral dimension of less than about 1 millimeter or smaller. The indentation pattern of the applicator can be used to transfer separate, distinct chemically or biochemically active agents or fluid precursors to separate, isolated regions of a substrate surface.
    Type: Application
    Filed: December 12, 2007
    Publication date: May 22, 2008
    Applicant: President and Fellows of Harvard College
    Inventors: Enoch Kim, Younan Xia, Milan Mrksich, Rebecca Jackman, Xiao-Mei Zhao, Stephen Smith, Mara Prentiss, George Whitesides, Christian Marzolin
  • Publication number: 20040178523
    Abstract: Chemically or biochemically active agents or other species are patterned on a substrate surface by providing a micromold having a contoured surface and forming, on a substrate surface, a chemically or biochemically active agent or fluid precursor of a structure. A chemically or biochemically active agent or fluid precursor also can be transferred from indentations in an applicator to a substrate surface. The substrate surface can be planar or non-planar. Fluid precursors of polymeric structures, inorganic ceramics and salts, and the like can be used to form patterned polymeric articles, inorganic salts and ceramics, reactive ion etch masks, etc. at the surface. The articles can be formed in a pattern including a portion having a lateral dimension of less than about 1 millimeter or smaller. The indentation pattern of the applicator can be used to transfer separate, distinct chemically or biochemically active agents or fluid precursors to separate, isolated regions of a substrate surface.
    Type: Application
    Filed: October 1, 2003
    Publication date: September 16, 2004
    Applicant: President and Fellows of Harvard College
    Inventors: Enoch Kim, Younan Xia, Milan Mrksich, Rebecca J. Jackman, Xiao-Mei Zhao, Stephen P. Smith, Mara G. Prentiss, George M. Whitesides, Christian Marzolin
  • Patent number: 6752942
    Abstract: Chemically or biochemically active agents or other species are patterned on a substrate surface by providing a micromold having a contoured surface and forming, on a substrate surface, a chemically or biochemically active agent or fluid precursor of a structure. A chemically or biochemically active agent or fluid precursor also can be transferred from indentations in an applicator to a substrate surface. The substrate surface can be planar or non-planar. Fluid precursors of polymeric structures, inorganic ceramics and salts, and the like can be used to form patterned polymeric articles, inorganic salts and ceramics, reactive ion etch masks, etc. at the surface. The articles can be formed in a pattern including a portion having a lateral dimension of less than about 1 millimeter or smaller. The indentation pattern of the applicator can be used to transfer separate, distinct chemically or biochemically active agents or fluid precursors to separate, isolated regions of a substrate surface.
    Type: Grant
    Filed: October 30, 2001
    Date of Patent: June 22, 2004
    Assignee: President and Fellows of Harvard College
    Inventors: Enoch Kim, Younan Xia, Milan Mrksich, Rebecca J. Jackman, Xiao-Mei Zhao, Stephen P. Smith, Mara G. Prentiss, George M. Whitesides, Christian Marzolin
  • Patent number: 6677175
    Abstract: The invention provides a method for producing an optical waveguide that includes the steps of: (a) forming a core structure, the core structure including an at least partially cured core composition, on a master defining a waveguide pattern; (b) applying over the top of the core structure and the master a cladding layer including a liquid cladding composition; (c) curing the cladding layer to form a core/cladding combination; and removing the core/cladding combination from the master so as to expose at least a portion of the core structure, wherein the refractive index of the core material is at least about 0.05 percent higher than the refractive index of the cladding material.
    Type: Grant
    Filed: July 27, 2001
    Date of Patent: January 13, 2004
    Assignees: Promerus, LLC, 3M Innovative Properties Company
    Inventors: Xiao-Mei Zhao, Ramakrishna Ravikiran, Phillip S. Neal, Robert A. Shick, James E. Watson, Thomas M. Kafka, Davy Chum, Raymond P. Johnston
  • Patent number: 6660192
    Abstract: Chemically or biochemically active agents or other species are patterned on a substrate surface by providing a micromold having a contoured surface and forming, on a substrate surface, a chemically or biochemically active agent or fluid precursor of a structure. A chemically or biochemically active agent or fluid precursor also can be transferred from indentations in an applicator to a substrate surface. The substrate surface can be planar or non-planar. Fluid precursors of polymeric structures, inorganic ceramics and salts, and the like can be used to form patterned polymeric articles, inorganic salts and ceramics, reactive ion etch masks, etc. at the surface. The articles can be formed in a pattern including a portion having a lateral dimension of less than about 1 millimeter or smaller. The indentation pattern of the applicator can be used to transfer separate, distinct chemically or biochemically active agents or fluid precursors to separate, isolated regions of a substrate surface.
    Type: Grant
    Filed: August 9, 2000
    Date of Patent: December 9, 2003
    Inventors: Enoch Kim, Younan Xia, Milan Mrksich, Rebecca J. Jackman, Xiao-Mei Zhao, Stephen P. Smith, Mara G. Prentiss, George M. Whitesides, Christian Marzolin
  • Patent number: 6538087
    Abstract: The present invention relates to polymer compositions and methods of polymerizing such compositions. Furthermore, the present invention relates to polymer compositions that are useful in forming waveguides and to methods for making waveguides using such polymer compositions.
    Type: Grant
    Filed: July 27, 2001
    Date of Patent: March 25, 2003
    Assignee: Promerus, LLC
    Inventors: Xiao-Mei Zhao, Ramakrishna Ravikiran, Phillip S. Neal, Robert A. Shick, Larry F. Rhodes, Andrew Bell
  • Publication number: 20020103317
    Abstract: The present invention relates to polymer compositions and methods of polymerizing such compositions. Furthermore, the present invention relates to polymer compositions that are useful in forming waveguides and to methods for making waveguides using such polymer compositions.
    Type: Application
    Filed: July 27, 2001
    Publication date: August 1, 2002
    Inventors: Xiao-Mei Zhao, Ramakrishna Ravikiran, Phillip S. Neal, Robert A. Shick, Larry F. Rhodes, Andrew Bell
  • Publication number: 20020066978
    Abstract: Chemically or biochemically active agents or other species are patterned on a substrate surface by providing a micromold having a contoured surface and forming, on a substrate surface, a chemically or biochemically active agent or fluid precursor of a structure. A chemically or biochemically active agent or fluid precursor also can be transferred from indentations in an applicator to a substrate surface. The substrate surface can be planar or non-planar. Fluid precursors of polymeric structures, inorganic ceramics and salts, and the like can be used to form patterned polymeric articles, inorganic salts and ceramics, reactive ion etch masks, etc. at the surface. The articles can be formed in a pattern including a portion having a lateral dimension of less than about 1 millimeter or smaller. The indentation pattern of the applicator can be used to transfer separate, distinct chemically or biochemically active agents or fluid precursors to separate, isolated regions of a substrate surface.
    Type: Application
    Filed: October 30, 2001
    Publication date: June 6, 2002
    Inventors: Enoch Kim, Younan Xia, Milan Mrksich, Rebecca J. Jackman, Xiao-Mei Zhao, Stephen P. Smith, Mara G. Prentiss, George M. Whitesides, Christian Marzolin
  • Publication number: 20020064896
    Abstract: The invention provides a method for producing an optical waveguide that includes the steps of: (a) forming a core structure, the core structure including an at least partially cured core composition, on a master defining a waveguide pattern; (b) applying over the top of the core structure and the master a cladding layer including a liquid cladding composition; (c) curing the cladding layer to form a core/cladding combination; and removing the core/cladding combination from the master so as to expose at least a portion of the core structure, wherein the refractive index of the core material is at least about 0.05 percent higher than the refractive index of the cladding material.
    Type: Application
    Filed: July 27, 2001
    Publication date: May 30, 2002
    Inventors: Xiao-Mei Zhao, Ramakrishna Ravikiran, Phillip S. Neal, Robert A. Shick, James E. Watson, Thomas M. Kafka, Davy Chum, Raymond P. Johnston
  • Patent number: 6355198
    Abstract: Chemically or biochemically active agents or other species are patterned on a substrate surface by providing a micromold having a contoured surface and forming, on a substrate surface, a chemically or biochemically active agent or fluid precursor of a structure. A chemically or biochemically active agent or fluid precursor also can be transferred from indentations in an applicator to a substrate surface. The substrate surface can be planar or nonplanar. Fluid precursors of polymeric structures, inorganic ceramics and salts, and the like can be used to form patterned polymeric articles, inorganic salts and ceramics, reactive ion etch masks, etc. at the surface. The articles can be formed in a pattern including a portion having a lateral dimension of less than about 1 millimeter or smaller. The indentation pattern of the applicator can be used to transfer separate, distinct chemically or biochemically active agents or fluid precursors to separate, isolated regions of a substrate surface.
    Type: Grant
    Filed: January 8, 1998
    Date of Patent: March 12, 2002
    Assignee: President and Fellows of Harvard College
    Inventors: Enoch Kim, Younan Xia, Milan Mrksich, Rebecca J. Jackman, Xiao-Mei Zhao, Stephen P. Smith, Mara G. Prentiss, George M. Whitesides, Christian Marzolin