Patents by Inventor Xiao-Ming He

Xiao-Ming He has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200291528
    Abstract: Disclosed herein is an article comprising one or more channels and a multi-layer protective coating on the one or more channels. The multi-layer protective coating includes an anodization layer comprising a plurality of cracks and a plurality of pores, a sealing layer on the anodization layer, and a top layer on the sealing layer. The sealing layer comprises a metal oxide, the seals the plurality of cracks and the plurality of pores, and has a porosity of approximately 0%. The top layer comprises a rare earth oxide, a rare earth fluoride, or a rare earth oxyfluoride, has a different material composition than the sealing layer, and has a porosity of approximately 0%.
    Type: Application
    Filed: March 11, 2019
    Publication date: September 17, 2020
    Inventors: Xiao-Ming He, Jennifer Y. Sun
  • Patent number: 10766824
    Abstract: Methods comprise performing two or more thermal cycles on an article comprising a body and a ceramic coating. Each thermal cycle of the two or more thermal cycles comprise heating the ceramic article to a target temperature at a first ramping rate. Each thermal cycle further comprises maintaining the article at the target temperature for a first duration of time and then cooling the article to a second target temperature at a second ramping rate. The method further comprises submerging the article in a bath for a second duration of time to remove the particles from the ceramic coating.
    Type: Grant
    Filed: November 8, 2017
    Date of Patent: September 8, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Kaushal Gangakhedkar, Jennifer Y. Sun, Xiao-Ming He
  • Patent number: 10755900
    Abstract: A method of applying a multi-layer plasma resistant coating on an article comprises performing plating or ALD to form a conformal first plasma resistant layer on an article, wherein the conformal first plasma resistant layer is formed on a surface of the article and on walls of high aspect ratio features in the article. The conformal first plasma resistant coating has a porosity of approximately 0% and a thickness of approximately 200 nm to approximately 1 micron. One of electron beam ion assisted deposition (EB-IAD), plasma enhanced chemical vapor deposition (PECVD), aerosol deposition or plasma spraying is then performed to form a second plasma resistant layer that covers the conformal first plasma resistant layer at a region of the surface but not at the walls of the high aspect ratio features.
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: August 25, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Toan Tran, Laksheswar Kalita, Tae Won Kim, Dmitry Lubomirsky, Xiaowei Wu, Xiao-Ming He, Cheng-Hsuan Chou, Jennifer Y. Sun
  • Publication number: 20200185203
    Abstract: A substrate support assembly includes a ground shield and a heater that is surrounded by the ground shield. The ground shield includes a plate. In one embodiment, the ground shield is composed of a ceramic body and includes an electrically conductive layer, a first protective layer on the upper surface of the plate. In another embodiment, the ground shield is composed of an electrically conductive body and a first protective layer on the upper surface of the plate.
    Type: Application
    Filed: December 6, 2018
    Publication date: June 11, 2020
    Inventors: Dmitry Lubomirsky, Xiao Ming He, Jennifer Y. Sun, Xiaowei Wu, Laksheswar Kalita, Soonam Park
  • Patent number: 10597742
    Abstract: The present invention discloses a machining technology of a low-temperature high-strength-ductility high manganese steel, high manganese steel plate, and high manganese steel tube, and a high manganese steel comprises the following components in percentage by weight: Mn 30%-36%, C 0.02%-0.06%, S?0.01%, P?0.008% and the balance being Fe. Smelted steel ingots are subject to solution treatment and are rolled and homogenized to obtain a high manganese steel plate or are drawn to form a high manganese steel tube. The hot-rolled or cold-rolled steel plate after being hot-rolled has tremendous application value in the fields of low-temperature applications, such as the steel plate used for a low temperature pressure container.
    Type: Grant
    Filed: April 15, 2015
    Date of Patent: March 24, 2020
    Assignee: YANSHAN UNIVERSITY
    Inventors: Yu hui Wang, Xiao xu Huang, Tian sheng Wang, Yan Peng, Yan ming He, Ya nan Zheng, Bo Liao
  • Patent number: 10596789
    Abstract: A method for labeling fabrics, such as fabric garments, and a heat-transfer label well-suited for use in the method. In one embodiment, the heat-transfer label includes (a) a support portion; and (b) a transfer portion, the transfer portion being positioned over the support portion for transfer of the transfer portion from the support portion to an article of fabric under conditions of heat and pressure, the transfer portion including (i) an ink design layer; (ii) a heat-activatable adhesive layer; and (iii) an RFID device.
    Type: Grant
    Filed: September 22, 2010
    Date of Patent: March 24, 2020
    Assignee: AVERY DENNISON CORPORATION
    Inventors: Kuolih Tsai, Dong-Tsai Hseih, Li Shu, David N. Edwards, Alan Morgenthau, Yi-Hung Chiao, Yukihiko Sasaki, Xiao-Ming He, Scott Wayne Ferguson
  • Publication number: 20190382880
    Abstract: Disclosed are rare earth metal containing silicate coatings, coated articles (e.g., heaters and susceptors) or bodies of articles and methods of coating such articles with a rare earth metal containing silicate coating.
    Type: Application
    Filed: June 18, 2019
    Publication date: December 19, 2019
    Inventors: Xiao-Ming He, Cheng-Hsuan Chou, Jennifer Y. Sun
  • Publication number: 20190376202
    Abstract: An enhanced anodization method includes forming a porous anodization layer comprising columns of anodization layer material with pores between adjacent columns. The method further includes sealing the porous layer by forming a sealing layer at a top of the porous layer. The sealing layer may be formed by using a hybrid sealing process that combines, in any order, two or more of de-ionized (DI) water seal, Ni sealing, and, PTFE sealing. Alternatively, the sealing layer is formed by conformally coating the columns in the porous layer with one or more layers of a coating material. Further, the coating material may be surface-fluorinated to improve plasma resistance.
    Type: Application
    Filed: June 6, 2019
    Publication date: December 12, 2019
    Inventors: Xiao-Ming HE, Jennifer Y. SUN, David FENWICK, Cheng-Hsuan CHOU, Xiaowei WU, Chidambara A. RAMALINGAM, Michael R. RICE
  • Publication number: 20190135704
    Abstract: Methods comprise performing two or more thermal cycles on an article comprising a body and a ceramic coating. Each thermal cycle of the two or more thermal cycles comprise heating the ceramic article to a target temperature at a first ramping rate. Each thermal cycle further comprises maintaining the article at the target temperature for a first duration of time and then cooling the article to a second target temperature at a second ramping rate. The method further comprises submerging the article in a bath for a second duration of time to remove the particles from the ceramic coating.
    Type: Application
    Filed: November 8, 2017
    Publication date: May 9, 2019
    Inventors: Kaushal GANGAKHEDKAR, Jennifer Y. SUN, Xiao-Ming HE
  • Publication number: 20190127280
    Abstract: Nanopowders containing nanoparticles having a core particle with a thin film coating. The core particles and thin film coatings are, independently, formed from at least one of a rare earth metal-containing oxide, a rare earth metal-containing fluoride, a rare earth metal-containing oxyfluoride or combinations thereof. The thin film coating may be formed using a non-line of sight technique such as atomic layer deposition (ALD). Also disclosed herein are nanoceramic materials formed from the nanopowders and methods of making and using the nanopowders.
    Type: Application
    Filed: October 23, 2018
    Publication date: May 2, 2019
    Inventors: Guodong Zhan, Xiaowei Wu, Xiao Ming He, Jennifer Y. Sun
  • Publication number: 20180330923
    Abstract: A method of applying a multi-layer plasma resistant coating on an article comprises performing plating or ALD to form a conformal first plasma resistant layer on an article, wherein the conformal first plasma resistant layer is formed on a surface of the article and on walls of high aspect ratio features in the article. The conformal first plasma resistant coating has a porosity of approximately 0% and a thickness of approximately 200 nm to approximately 1 micron. One of electron beam ion assisted deposition (EB-IAD), plasma enhanced chemical vapor deposition (PECVD), aerosol deposition or plasma spraying is then performed to form a second plasma resistant layer that covers the conformal first plasma resistant layer at a region of the surface but not at the walls of the high aspect ratio features.
    Type: Application
    Filed: April 27, 2018
    Publication date: November 15, 2018
    Inventors: Toan Tran, Laksheswar Kalita, Tae Won Kim, Dmitry Lubomirsky, Xiaowei Wu, Xiao-Ming He, Cheng-Hsuan Chou, Jennifer Y. Sun
  • Patent number: 10035368
    Abstract: A label assembly and method of using the same to label articles durably, yet removably. In one embodiment, the method includes providing an image removing laminate. The image removing laminate includes (i) a remover support, and (ii) a remover layer secured to the remover support, the remover layer, upon being activated by at least one of heat and light, being bondable to an ink image on a garment in such a way that the bonding between the remover layer and the ink image is stronger than the bonding between the ink image and the garment. The method then includes bonding the remover layer of the image removing laminate to the ink image on the garment and, then, detaching the ink image from the garment by separating the image removing laminate away from the garment.
    Type: Grant
    Filed: May 5, 2016
    Date of Patent: July 31, 2018
    Assignee: AVERY DENNISON RETAIL INFORMATION SERVICES, LLC
    Inventors: Dong-Tsai Hseih, Kuolih Tsai, Yi-Hung Chiao, Xiao-Ming He, Li Shu, Ramin Heydarpour, Alan Morgenthau
  • Patent number: 9499937
    Abstract: A method for labeling fabrics, such as fabric garments, and a heat-transfer label well-suited for use in said method. In one embodiment, the heat-transfer label comprises (i) a support portion, the support portion comprising a carrier and a release layer; (ii) a wax layer, the wax layer overcoating the release layer; and (iii) a transfer portion, the transfer portion comprising an adhesive layer printed onto the wax layer and an ink design layer printed onto the adhesive layer. Preferably, at least a portion of the ink design layer is printed using a variable printing technique, such as thermal transfer printing.
    Type: Grant
    Filed: December 31, 2013
    Date of Patent: November 22, 2016
    Assignee: AVERY DENNISON CORPORATION
    Inventors: Xiao-Ming He, Liviu Dinescu, Kuolih Tsai, Dong-Tsai Hseih, Li Shu, Yi-Hung Chiao, Alan Morgenthau, Ramin Heydarpour
  • Publication number: 20160243871
    Abstract: A label assembly and method of using the same to label articles durably, yet removably. In one embodiment, the method includes providing an image removing laminate. The image removing laminate includes (i) a remover support, and (ii) a remover layer secured to the remover support, the remover layer, upon being activated by at least one of heat and light, being bondable to an ink image on a garment in such a way that the bonding between the remover layer and the ink image is stronger than the bonding between the ink image and the garment. The method then includes bonding the remover layer of the image removing laminate to the ink image on the garment and, then, detaching the ink image from the garment by separating the image removing laminate away from the garment.
    Type: Application
    Filed: May 5, 2016
    Publication date: August 25, 2016
    Inventors: Dong-Tsai Hseih, Kuolih Tsai, Yi-Hung Chiao, Xiao-Ming He, Li Shu, Ramin Heydarpour, Alan Morgenthau
  • Publication number: 20140110042
    Abstract: A method for labeling fabrics, such as fabric garments, and a heat-transfer label well-suited for use in said method. In one embodiment, the heat-transfer label comprises (i) a support portion, the support portion comprising a carrier and a release layer; (ii) a wax layer, the wax layer overcoating the release layer; and (iii) a transfer portion, the transfer portion comprising an adhesive layer printed onto the wax layer and an ink design layer printed onto the adhesive layer. Preferably, at least a portion of the ink design layer is printed using a variable printing technique, such as thermal transfer printing.
    Type: Application
    Filed: December 31, 2013
    Publication date: April 24, 2014
    Inventors: Xiao-Ming He, Liviu Dinescu, Kuolih Tsai, Dong-Tsai Hseih, Li Shu, Yi-Hung Chiao, Alan Morgenthau, Ramin Heydarpour
  • Patent number: 8647740
    Abstract: A method for labeling fabrics, such as fabric garments, and a heat-transfer label well-suited for use in said method. In one embodiment, the heat-transfer label comprises (i) a support portion, the support portion comprising a carrier and a release layer; (ii) a wax layer, the wax layer overcoating the release layer; and (iii) a transfer portion, the transfer portion comprising an adhesive layer printed onto the wax layer and an ink design layer printed onto the adhesive layer. Preferably, at least a portion of the ink design layer is printed using a variable printing technique, such as thermal transfer printing.
    Type: Grant
    Filed: July 11, 2007
    Date of Patent: February 11, 2014
    Assignee: Avery Dennison Corporation
    Inventors: Xiao-Ming He, Liviu Dinescu, Kuolih Tsai, Dong-Tsai Hseih, Li Shu, Yi-Hung Chiao, Alan Morgenthau, Ramin Heydarpour
  • Publication number: 20120298293
    Abstract: A label assembly and method of using the same to label articles durably, yet removably. In one embodiment, the method includes providing an image removing laminate. The image removing laminate includes (i) a remover support, and (ii) a remover layer secured to the remover support, the remover layer, upon being activated by at least one of heat and light, being bondable to an ink image on a garment in such a way that the bonding between the remover layer and the ink image is stronger than the bonding between the ink image and the garment. The method then includes bonding the remover layer of the image removing laminate to the ink image on the garment and, then, detaching the ink image from the garment by separating the image removing laminate away from the garment.
    Type: Application
    Filed: August 6, 2012
    Publication date: November 29, 2012
    Applicant: AVERY DENNISON CORPORATION
    Inventors: Dong-Tsai Hseih, Kuolih Tsai, Yi-Hung Chiao, Xiao-Ming He, Li Shu, Ramin Heydarpour, Alan Morgenthau
  • Patent number: 8247056
    Abstract: A label assembly and method of using the same to label articles durably, yet removably. In one embodiment, the label assembly is used to label fabric articles, such as clothing, and comprises (a) an image forming laminate for forming an image on the fabric article, the image forming laminate comprising an ink layer, the ink layer being bondable to the fabric article; and (b) an image removing laminate for removing the image from the fabric article, the image removing laminate comprising a remover layer, the remover layer, upon being activated by heat and/or light, being bondable to the ink layer of the image forming laminate; (c) whereby, upon bonding of the image removing laminate to the ink layer, the bonding between the image removing laminate and the ink layer is stronger than the bonding between the ink layer and the fabric article.
    Type: Grant
    Filed: August 31, 2011
    Date of Patent: August 21, 2012
    Assignee: Avery Dennison Corporation
    Inventors: Dong-Tsai Hseih, Kuolih Tsai, Yi-Hung Chiao, Xiao-Ming He, Li Shu, Ramin Heydarpour, Alan Morgenthau
  • Patent number: 8206829
    Abstract: Plasma resistant coating materials, plasma resistant coatings and methods of forming such coatings on hardware components. In one embodiment, hardware component is an electrostatic chuck (ESC) and the plasma resistant coating is formed on a surface of the ESC. The plasma resistant coatings are formed by methods other than thermal spraying to provide plasma resistant coatings having advantageous material properties.
    Type: Grant
    Filed: November 10, 2008
    Date of Patent: June 26, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Jennifer Y. Sun, Xiao-Ming He, Senh Thach
  • Publication number: 20110308718
    Abstract: A label assembly and method of using the same to label articles durably, yet removably. In one embodiment, the label assembly is used to label fabric articles, such as clothing, and comprises (a) an image forming laminate for forming an image on the fabric article, the image forming laminate comprising an ink layer, the ink layer being bondable to the fabric article; and (b) an image removing laminate for removing the image from the fabric article, the image removing laminate comprising a remover layer, the remover layer, upon being activated by heat and/or light, being bondable to the ink layer of the image forming laminate; (c) whereby, upon bonding of the image removing laminate to the ink layer, the bonding between the image removing laminate and the ink layer is stronger than the bonding between the ink layer and the fabric article.
    Type: Application
    Filed: August 31, 2011
    Publication date: December 22, 2011
    Inventors: Dong-Tsai Hseih, Kuolih Tsai, Yi-Hung Chiao, Xiao-Ming He, Li Shu, Ramin Heydarpour, Alan Morgenthau