Patents by Inventor XIAO-WEN CHENG

XIAO-WEN CHENG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11674157
    Abstract: Certain donor plasmid vectors such as pFastBac™1 and pFastBac™ Dual lack a cis DNA element upstream of the polh translation start codon (ATG) present in wild type (wt) Autographa californica multiple nucleopolyhedrovirus (AcMNPV), and contain a SV40 pA fragment. When a cis DNA element is inserted upstream of the 50 bp polh promoter and SV40 pA was replaced with a AcMNPV polh pA signal in pFastBac™1 and pFastBac™Dual, certain protein expression levels in High Five™ cells using the Bac-to-Bac® system reached that of the wt AcMNPV.
    Type: Grant
    Filed: June 19, 2018
    Date of Patent: June 13, 2023
    Assignee: Miami University
    Inventors: Xiao-Wen Cheng, Hui Shang, Tyler Garretson
  • Publication number: 20190002918
    Abstract: Certain donor plasmid vectors such as pFastBac™1 and pFastBac™ Dual lack a cis DNA element upstream of the polh translation start codon (ATG) present in wild type (wt) Autographa californica multiple nucleopolyhedrovirus (AcMNPV), and contain a SV40 pA fragment. When a cis DNA element is inserted upstream of the 50 bp polh promoter and SV40 pA was replaced with a AcMNPV polh pA signal in pFastBac™1 and pFastBac™Dual, certain protein expression levels in High Five™ cells using the Bac-to-Bac® system reached that of the wt AcMNPV.
    Type: Application
    Filed: June 19, 2018
    Publication date: January 3, 2019
    Inventors: Xiao-Wen Cheng, Hui Shang, Tyler Garretson
  • Patent number: 9909106
    Abstract: A recombinant baculovirus expression vector or cell comprising an engineered baculovirus fp25k gene with one to three modified or mutated spots, the modified spots comprise the two 7-adenine mononucleotide repeats (MNR) and the 10th TTAA site. The invention also provides the method of making the vector and baculovirus.
    Type: Grant
    Filed: February 14, 2014
    Date of Patent: March 6, 2018
    Assignee: Miami University
    Inventors: Xiao-Wen Cheng, Xin-Hua Cheng, Tyler A. Garretson
  • Patent number: 9687657
    Abstract: The present invention provides a pacemaker signal detecting method, a pacemaker signal detecting system, and an electrocardial detecting device. The pacemaker signal detecting system pre-processes an original pacemaker signal separated from a pacemaker electrocardial signal, calculates a number of basic morphological features based on the pre-processed original pacemaker signal, confirms an authenticity of a pacemaker signal according to the calculated basic morphological features, and records positions of the true pacemaker signal has been confirmed. The basic morphological features include a width, a slew rate, and amplitude of the pacemaker signal. The electrocardial detecting device of the present invention can detect the pacemaker signal more precisely and output the electrocardial signal marked with the pacemaker signal.
    Type: Grant
    Filed: June 11, 2015
    Date of Patent: June 27, 2017
    Assignee: Shenzhen Mindray Bio-Medical Electronics Co., Ltd.
    Inventors: Ze-Hui Sun, Xiao-Wen Cheng, Ming-Shi Ding, Qi-Ling Liu
  • Publication number: 20160122724
    Abstract: A recombinant baculovirus expression vector or cell comprising an engineered baculovirus fp25k gene with one to three modified or mutated spots, the modified spots comprise the two 7-adenine mononucleotide repeats (MNR) and the 10th TTAA site. The invention also provides the method of making the vector and baculovirus.
    Type: Application
    Filed: February 14, 2014
    Publication date: May 5, 2016
    Inventors: Xiao-Wen Cheng, Xin-Hua Cheng, Tyler A. Garretson
  • Publication number: 20150283387
    Abstract: The present invention provides a pacemaker signal detecting method, a pacemaker signal detecting system, and an electrocardial detecting device. The pacemaker signal detecting system pre-processes an original pacemaker signal separated from a pacemaker electrocardial signal, calculates a number of basic morphological features based on the pre-processed original pacemaker signal, confirms an authenticity of a pacemaker signal according to the calculated basic morphological features, and records positions of the true pacemaker signal has been confirmed. The basic morphological features include a width, a slew rate, and amplitude of the pacemaker signal. The electrocardial detecting device of the present invention can detect the pacemaker signal more precisely and output the electrocardial signal marked with the pacemaker signal.
    Type: Application
    Filed: June 11, 2015
    Publication date: October 8, 2015
    Inventors: ZE-HUI SUN, XIAO-WEN CHENG, MING-SHI DING, QI-LING LIU