Patents by Inventor Xiao-Wen Shi

Xiao-Wen Shi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8791239
    Abstract: Biofunctionalized fibers including a fiber platform and a histidine-tagged protein and, optionally, an antibody. Chitosan is a fiber useful as the fiber platform. The fiber platform may be treated with nickel or may be directly linked to the histidine-tagged protein e.g., histidine-tagged streptococcal IgG-binding protein, protein G, protein G3T, GFP or RFP. The resulting biofunctionalized fibers can be assembled into protein fiber assemblies by a variety of biofabrication methods. The fiber assemblies, e.g., in the form of woven fabrics, are useful for (i) antigen capture; (ii) immunoanalysis, and/or (iii) multiplexed analysis. In one fabrication, each fiber of a fiber assembly presents a specific antibody, and mixing and matching of fibers, for example by weaving of fabrics from various antibody-presenting fibers, allows for multiple antigens to be captured simultaneously for multiplexed analysis.
    Type: Grant
    Filed: April 7, 2009
    Date of Patent: July 29, 2014
    Assignee: University of Maryland, College Park
    Inventors: Xiao-Wen Shi, Hsuan-Chen Wu, Gregory F. Payne, William E. Bentley
  • Patent number: 8562809
    Abstract: A method of forming a bioelectronic device including a protein on an electrically conductive substrate, by electrodepositing aminopolysaccharide chitosan on the substrate while applying a cathodic voltage to the substrate, to form an aminopolysaccharide chitosan film thereon, applying an anodic voltage to the substrate in the presence of NaCl to activate the aminopolysaccharide chitosan film so that it is reactive with protein. The method also optionally includes reacting the aminopolysaccharide film, after activation thereof, with the protein, so that the protein assembles on and is coupled to the substrate, thereby forming a bioelectronic device. The protein can include single or multiple protein species, and including biosensing proteins. Additional methods include biosensing of electrochemically active compounds either present in a sample or generated during a biological recognition event and devices useful in such methods.
    Type: Grant
    Filed: October 2, 2009
    Date of Patent: October 22, 2013
    Assignee: University of Maryland, College Park
    Inventors: Yi Liu, Xiao-Wen Shi, Gregory F. Payne, W. Lee Meyer
  • Publication number: 20120103822
    Abstract: Methods for the generation of hydrogels formed by electrodeposition of an electroaddressable polymer are described. The hydrogels may contain one or more cell populations electroaddressed or electroaddressable to a location within the hydrogel and where the cells of the cell populations are entrapped by the hydrogel and are capable of expansion within the hydrogel and may be releasable from the hydrogel. Further provided are electroaddressable polysaccharide blends for the in-film expansion of a cell population, allowing probing of the cells and formation of immunocomplexes. Further provided are methods of using hydrogels containing electroaddressed or electroaddressable cell populations in in-film bioprocessing methods such as cell-based biosensing, protein-based biosensing, and in studies of cell signaling.
    Type: Application
    Filed: April 27, 2010
    Publication date: May 3, 2012
    Applicant: UNIVERSITY OF MARYLAND COLLEGE PARK
    Inventors: Xiao-Wen Shi, Yi Liu, Gregory F. Payne, Xiaohua Yang
  • Publication number: 20110217785
    Abstract: A method of forming a bioelectronic device including a protein on an electrically conductive substrate, by electro-depositing aminopolysaccharide chitosan on the substrate while applying a cathodic voltage to the substrate, to form an aminopolysaccharide chitosan film thereon, applying an anodic voltage to the substrate in the presence of NaCl to activate the aminopolysaccharide chitosan film so that it is reactive with protein. The method also optionally includes reacting the aminopolysaccharide film, after activation thereof, with the protein, so that the protein assembles on and is coupled to the substrate, thereby forming a bioelectronic device. The protein can include single or multiple protein species, and including biosensing proteins. Additional methods include biosensing of electrochemically active compounds either present in a sample or generated during a biological recognition event and devices useful in such methods.
    Type: Application
    Filed: October 2, 2009
    Publication date: September 8, 2011
    Applicant: UNIVERSITY OF MARYLAND, COLLEGE PARK
    Inventors: Yi Liu, Xiao-Wen Shi, Gregory F. Payne, W. Lee Meyer
  • Publication number: 20110195860
    Abstract: Biofunctionalized fibers including a fiber platform and a histidine-tagged protein and, optionally, an antibody. Chitosan is a fiber useful as the fiber platform. The fiber platform may be treated with nickel or may be directly linked to the histidine-tagged protein e.g., histidine-tagged streptococcal IgG-binding protein, protein G, protein G3T, GFP or RFP. The resulting biofunctionalized fibers can be assembled into protein fiber assemblies by a variety of biofabrication methods. The fiber assemblies, e.g., in the form of woven fabrics, are useful for (i) antigen capture; (ii) immunoanalysis, and/or (iii) multiplexed analysis. In one fabrication, each fiber of a fiber assembly presents a specific antibody, and mixing and matching of fibers, for example by weaving of fabrics from various antibody-presenting fibers, allows for multiple antigens to be captured simultaneously for multiplexed analysis.
    Type: Application
    Filed: April 7, 2009
    Publication date: August 11, 2011
    Applicant: UNIVERSITY OF MARYLAND, COLLEGE PARK
    Inventors: Xiao-Wen Shi, Hsuan-Chen Wu, Gregory F. Payne, William E. Bentley