Patents by Inventor Xiao Zhu Fan

Xiao Zhu Fan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11879958
    Abstract: A system includes a light detection and ranging (LiDAR) unit comprising an atmospheric characterization transceiver module. The LiDAR unit is configured to transmit light into an external interaction air region, and collect scattered portions of the transmitted light from the external interaction air region. A robotic arm is operatively coupled to the atmospheric characterization transceiver module. A processor is in operative communication with the robotic arm. The processor is configured to control the robotic arm to position and point the atmospheric characterization transceiver module in a direction of interest to interrogate the external interaction air region.
    Type: Grant
    Filed: October 5, 2018
    Date of Patent: January 23, 2024
    Assignee: Honeywell International Inc.
    Inventors: Matthew Wiebold, Xiao Zhu Fan
  • Patent number: 11815608
    Abstract: In an embodiment, a method is provided. The method comprises selecting at least one set of line of sight (LOS) vectors oriented in one or more directions outward from a vehicle; determining at least one air data solution based on the at least one set of LOS vectors; adjusting at least one value of an air vector equation based on a predetermined quantity; upon adjusting the at least one value, then determining at least one modified air data solution, wherein the at least one modified air data solution is determined based on the at least one set of LOS vectors and the at least one value; and comparing a difference between the at least one air data solution and the at least one modified air data solution to a threshold value, wherein the threshold value is indicative of error with respect to the at least one set of LOS vectors.
    Type: Grant
    Filed: July 28, 2020
    Date of Patent: November 14, 2023
    Assignee: Honeywell International Inc.
    Inventors: Timothy A. Peterson, Xiao Zhu Fan, Matthew Wiebold
  • Patent number: 11774594
    Abstract: An air data system comprises a light source that emits a pulsed beam, and an optical transceiver coupled to the light source and configured to receive the pulsed beam. The transceiver is operative to transmit the pulsed beam into an interrogation air region; and receive and collect scattered pulses from the interrogation air region. An optical modulation device is coupled to the transceiver, and is configured to receive the collected scattered pulses from the transceiver and output modulated pulses. An optical detector is coupled to the modulation device and receives the modulated pulses from the modulation device. The modulation device has a nanosecond-based rise/fall time that is synchronized and delayed with respect to the pulsed beam. The modulation device provides for stroboscopic detection of a volume of the interrogation air region based on the modulated pulses received by the detector and having an exposure time of multiple pulse periods.
    Type: Grant
    Filed: June 23, 2020
    Date of Patent: October 3, 2023
    Assignee: Honeywell International Inc.
    Inventors: Timothy A. Peterson, Xiao Zhu Fan
  • Patent number: 11754484
    Abstract: A system comprises an optical air data system that measures aerosol and molecular scattering of light, and an optical instrument that measures aerosol and/or molecular scattering of light. A processor receives data from the air data system and from the optical instrument. The processor performs one or more signal analysis and data fusion methods comprising: (a) determining aerosol and/or molecular concentration from the received data, modifying a data analysis algorithm to optimize any remaining unknown parameters, and outputting enhanced air data parameters; (b) determining aerosol concentration from the received data, dynamically optimizing hardware settings in the air data system to enhance a signal level and avoid system saturation, and outputting enhanced air data parameters; or (c) determining aerosol and/or molecular concentration from the received data, estimating a confidence level of an air data algorithm, verifying optical health of the air data system, and reporting the optical health to a user.
    Type: Grant
    Filed: September 22, 2020
    Date of Patent: September 12, 2023
    Assignee: Honeywell International Inc.
    Inventors: Xiao Zhu Fan, Timothy A. Peterson, Lee R. Wienkes, Matthew Wiebold
  • Patent number: 11709124
    Abstract: A system comprises a particle sensor unit in communication with a processor. The sensor unit comprises a source that transmits light into an interrogation region; receive optics that collect scattered light from particles in the interrogation region; and an optical detector that receives the collected light from the receive optics. The detector comprises a sample area including one or more sampling pixels, and an edge region including one or more edge pixels. The processor analyzes intensity data from the detector by a method comprising: combining all intensity data from the sampling pixels; adding the combined intensity data to a data set; determining whether to accept overlap intensity data that corresponds to an overlap between the sampling pixels and the edge pixels; adding the overlap intensity data to the data set if accepted; discarding the overlap intensity data if not accepted; and discarding all non-overlapping intensity data from the edge pixels.
    Type: Grant
    Filed: July 13, 2020
    Date of Patent: July 25, 2023
    Assignee: Honeywell International Inc.
    Inventors: Lee R. Wienkes, Xiao Zhu Fan
  • Patent number: 11525841
    Abstract: A system comprises a particle sensor assembly, which includes a light source that transmits a light beam into an external interrogation air region; a set of receive optics that provides a receive channel, the receive optics configured to collect a scattered portion of the light beam from a particle in the interrogation air region; and an optical detector that receives the collected scattered portion. The optical detector measures a signal intensity as a function of time from the scattered portion, with the signal intensity indicating a particle size and a signal duration indicating motion of the particle through the interrogation air region. A processor is in communication with the optical detector and is operative to determine a transit time of the particle through the interrogation air region based on the signal duration, and compute an airspeed based on parameters comprising the transit time and a size of the light beam.
    Type: Grant
    Filed: April 19, 2018
    Date of Patent: December 13, 2022
    Assignee: Honeywell International Inc.
    Inventors: Lee R. Wienkes, Matthew Wiebold, Xiao Zhu Fan
  • Publication number: 20220091007
    Abstract: A system comprises an optical air data system that measures aerosol and molecular scattering of light, and an optical instrument that measures aerosol and/or molecular scattering of light. A processor receives data from the air data system and from the optical instrument. The processor performs one or more signal analysis and data fusion methods comprising: (a) determining aerosol and/or molecular concentration from the received data, modifying a data analysis algorithm to optimize any remaining unknown parameters, and outputting enhanced air data parameters; (b) determining aerosol concentration from the received data, dynamically optimizing hardware settings in the air data system to enhance a signal level and avoid system saturation, and outputting enhanced air data parameters; or (c) determining aerosol and/or molecular concentration from the received data, estimating a confidence level of an air data algorithm, verifying optical health of the air data system, and reporting the optical health to a user.
    Type: Application
    Filed: September 22, 2020
    Publication date: March 24, 2022
    Applicant: Honeywell International Inc.
    Inventors: Xiao Zhu Fan, Timothy A. Peterson, Lee R. Wienkes, Matthew Wiebold
  • Publication number: 20220036742
    Abstract: In an embodiment, a method is provided. The method comprises selecting at least one set of line of sight (LOS) vectors oriented in one or more directions outward from a vehicle; determining at least one air data solution based on the at least one set of LOS vectors; adjusting at least one value of an air vector equation based on a predetermined quantity; upon adjusting the at least one value, then determining at least one modified air data solution, wherein the at least one modified air data solution is determined based on the at least one set of LOS vectors and the at least one value; and comparing a difference between the at least one air data solution and the at least one modified air data solution to a threshold value, wherein the threshold value is indicative of error with respect to the at least one set of LOS vectors.
    Type: Application
    Filed: July 28, 2020
    Publication date: February 3, 2022
    Applicant: Honeywell International Inc.
    Inventors: Timothy A. Peterson, Xiao Zhu Fan, Matthew Wiebold
  • Publication number: 20220011215
    Abstract: A system comprises a particle sensor unit in communication with a processor. The sensor unit comprises a source that transmits light into an interrogation region; receive optics that collect scattered light from particles in the interrogation region; and an optical detector that receives the collected light from the receive optics. The detector comprises a sample area including one or more sampling pixels, and an edge region including one or more edge pixels. The processor analyzes intensity data from the detector by a method comprising: combining all intensity data from the sampling pixels; adding the combined intensity data to a data set; determining whether to accept overlap intensity data that corresponds to an overlap between the sampling pixels and the edge pixels; adding the overlap intensity data to the data set if accepted; discarding the overlap intensity data if not accepted; and discarding all non-overlapping intensity data from the edge pixels.
    Type: Application
    Filed: July 13, 2020
    Publication date: January 13, 2022
    Applicant: Honeywell International Inc.
    Inventors: Lee R. Wienkes, Xiao Zhu Fan
  • Publication number: 20210396884
    Abstract: An air data system comprises a light source that emits a pulsed beam, and an optical transceiver coupled to the light source and configured to receive the pulsed beam. The transceiver is operative to transmit the pulsed beam into an interrogation air region; and receive and collect scattered pulses from the interrogation air region. An optical modulation device is coupled to the transceiver, and is configured to receive the collected scattered pulses from the transceiver and output modulated pulses. An optical detector is coupled to the modulation device and receives the modulated pulses from the modulation device. The modulation device has a nanosecond-based rise/fall time that is synchronized and delayed with respect to the pulsed beam. The modulation device provides for stroboscopic detection of a volume of the interrogation air region based on the modulated pulses received by the detector and having an exposure time of multiple pulse periods.
    Type: Application
    Filed: June 23, 2020
    Publication date: December 23, 2021
    Applicant: Honeywell International Inc.
    Inventors: Timothy A. Peterson, Xiao Zhu Fan
  • Patent number: 10794835
    Abstract: A sensor assembly comprises a device mounted on a surface of a vehicle and extending through at least one passage in the surface of the vehicle, and a sensor comprising a short range particulate (SRP) sensor, or a light detection and ranging (LiDAR) air data sensor. The sensor is co-located and integrated with the device mounted on the surface of the vehicle. No additional passages through the surface of the vehicle are needed to integrate the sensor with the device.
    Type: Grant
    Filed: February 23, 2018
    Date of Patent: October 6, 2020
    Assignee: Honeywell International Inc.
    Inventors: Xiao Zhu Fan, Brett Gordon Northcutt, Stanley Robert Hodge
  • Patent number: 10775504
    Abstract: In one embodiment, a system includes a vehicle and a laser air data sensor, including a laser transceiver configured to transmit one or more laser light beams, mounted to the vehicle. In some embodiments, a window of the laser transceiver is fixed and oriented to transmit one or more laser light beams away from the vehicle and approximately parallel to a vertical axis of the vehicle. In some embodiments, a window of the laser transceiver is fixed and oriented to transmit one or more laser light beams toward another portion of the vehicle. In some embodiments, the system further includes a processing device configured to control the laser air data sensor to attenuate the one or more laser light beams based on one or more operating parameters of the vehicle.
    Type: Grant
    Filed: September 29, 2016
    Date of Patent: September 15, 2020
    Assignee: Honeywell International Inc.
    Inventors: Jason Garde, Grant Lodden, Xiao Zhu Fan, Danny Thomas Kimmel
  • Patent number: 10591422
    Abstract: A particle detection system is provided. The particle detection system comprises at least one transmitter; at least one receiver; a first interrogation volume formed by a first intersection of a first pair of a transmitter beam of a transmitter and a receiver field of view of a receiver; and a second interrogation volume formed by a second intersection of a second pair of a transmitter beam of a transmitter and a receiver field of view of a receiver.
    Type: Grant
    Filed: October 5, 2017
    Date of Patent: March 17, 2020
    Assignee: Honeywell International Inc.
    Inventors: Xiao Zhu Fan, Matthew Wiebold, Jason Garde, Lee R Wienkes
  • Patent number: 10591312
    Abstract: A system for obtaining air data for a vehicle comprises a laser device that emits laser light pulses, and transmit optics that transmits the light pulses into an external air volume adjacent to the vehicle. The system also includes receive optics that collects scattered portions of the light pulses from the external air volume, and a whispering gallery mode (WGM) frequency discriminator that receives the scattered portions of the light pulses from the receive optics. The WGM frequency discriminator includes at least one WGM resonator that outputs a selected portion of the light pulses at one or more optical signal frequencies via tuning the WGM resonator other than by an electro-optic effect. An optical detector samples the selected portion of the light pulses from the WGM frequency discriminator, and converts the sampled light pulses to scalar values. A processing unit receives and records the scalar values from the optical detector.
    Type: Grant
    Filed: August 3, 2017
    Date of Patent: March 17, 2020
    Assignee: Honeywell International Inc.
    Inventors: Matthew Wiebold, Grant Lodden, Dominique Fourguette, Xiao Zhu Fan, David Johnson, Jane Pavlich, David Zuk
  • Publication number: 20200049625
    Abstract: In one embodiment, a particle sensor on or in a vehicle is provided. The laser particle sensor comprises an optical system; a processing system coupled to the optical system; wherein the optical system is configured to transmit one or more laser light beams to detect particles in a volume of freestream fluid, and to have the one or more light beams terminate on a portion of the vehicle on which the optical system is mounted; and wherein the optical system is configured to receive a backscattered portion of the one or more laser light beams transmitted by the optical system.
    Type: Application
    Filed: October 22, 2019
    Publication date: February 13, 2020
    Applicant: Honeywell International Inc.
    Inventors: Jason Garde, Xiao Zhu Fan, Grant Lodden, Danny Thomas Kimmel
  • Patent number: 10518896
    Abstract: In one embodiment, a method of determining the onset of a stall condition in a vehicle is provided. The method comprises: measuring, with a stall detection system, data which would indicate the presence of turbulent fluid flowing proximate to a foil; determining from the data whether an onset of a stall condition has occurred; and upon determining the onset of the stall condition, performing at least one of: issuing an alert, and causing the vehicle to avoid or exit the stall condition, and cease such activity when the onset of the stall condition no longer exists.
    Type: Grant
    Filed: December 21, 2016
    Date of Patent: December 31, 2019
    Assignee: Honeywell International Inc.
    Inventors: Jason Garde, Grant Lodden, Xiao Zhu Fan, Matthew Wiebold
  • Publication number: 20190377092
    Abstract: A system includes a light detection and ranging (LiDAR) unit comprising an atmospheric characterization transceiver module. The LiDAR unit is configured to transmit light into an external interaction air region, and collect scattered portions of the transmitted light from the external interaction air region. A robotic arm is operatively coupled to the atmospheric characterization transceiver module. A processor is in operative communication with the robotic arm. The processor is configured to control the robotic arm to position and point the atmospheric characterization transceiver module in a direction of interest to interrogate the external interaction air region.
    Type: Application
    Filed: October 5, 2018
    Publication date: December 12, 2019
    Applicant: Honeywell International Inc.
    Inventors: Matthew Wiebold, Xiao Zhu Fan
  • Publication number: 20190324051
    Abstract: A system comprises a particle sensor assembly, which includes a light source that transmits a light beam into an external interrogation air region; a set of receive optics that provides a receive channel, the receive optics configured to collect a scattered portion of the light beam from a particle in the interrogation air region; and an optical detector that receives the collected scattered portion. The optical detector measures a signal intensity as a function of time from the scattered portion, with the signal intensity indicating a particle size and a signal duration indicating motion of the particle through the interrogation air region. A processor is in communication with the optical detector and is operative to determine a transit time of the particle through the interrogation air region based on the signal duration, and compute an airspeed based on parameters comprising the transit time and a size of the light beam.
    Type: Application
    Filed: April 19, 2018
    Publication date: October 24, 2019
    Applicant: Honeywell International Inc.
    Inventors: Lee R. Wienkes, Matthew Wiebold, Xiao Zhu Fan
  • Patent number: 10444367
    Abstract: A method of enhancing LiDAR data is provided. The method includes inputting LiDAR data from at least one LiDAR sensor; inputting data from at least one of: at least one static pressure sensor; and at least one total air temperature sensor; and extracting accurate air data parameters by processing one of: the LiDAR data and static pressure data from the static pressure sensor; the LiDAR data and true temperature data from the total air temperature sensor; or the LiDAR data, the static pressure data from the static pressure sensor, and the true temperature data from the total air temperature sensor. The method also includes generating augmented air data based on the extracted accurate air data parameters and outputting the augmented air data.
    Type: Grant
    Filed: June 2, 2016
    Date of Patent: October 15, 2019
    Assignee: Honeywell International Inc.
    Inventors: Grant Lodden, Xiao Zhu Fan, Danny Thomas Kimmel, Brett Gordon Northcutt
  • Patent number: 10404925
    Abstract: A system for multispectral imaging and ranging is provided. The system comprises at least one light illumination source, and a focal plane detector array configured to support both passive imaging and active imaging at multiple wavelengths. The focal plane detector array includes a plurality of pixels, wherein each of the pixels comprises a plurality of detectors. The detectors are configured to collect passive light to support passive imaging; collect retro-reflected light, transmitted by the at least one light illumination source, to support active illuminated imaging; and collect retro-reflected light, transmitted by the at least one light illumination source, to support active illuminated ranging.
    Type: Grant
    Filed: September 29, 2016
    Date of Patent: September 3, 2019
    Assignee: Honeywell International Inc.
    Inventors: Earl Thomas Benser, Grant Lodden, Xiao Zhu Fan