Patents by Inventor Xiaobing Feng

Xiaobing Feng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6858129
    Abstract: There is provided a zeolite bound zeolite catalyst which does not contain significant amount of non-zeolitic binder and can be tailored to optimize its performance and a process for converting hydrocarbons utilizing the zeolite bound zeolite catalyst. The zeolite bound zeolite catalyst comprises core crystals containing first crystals of a first zeolite and optionally second crystals of a second zeolite having a composition, structure type, or both that is different from said first zeolite and binder crystals containing third crystals of a third zeolite and optionally fourth crystals of a fourth zeolite having a composition, structure type, or both that is different from said third zeolite. If the core crystals do not contain the second crystals of the second zeolite, then the binder crystals must contain the fourth crystals of the fourth zeolite. The zeolite bound zeolite finds application in hydrocarbon conversion processes, e.g.
    Type: Grant
    Filed: August 6, 2003
    Date of Patent: February 22, 2005
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Gary David Mohr, Kenneth Ray Clem, Wilfried Jozef Mortier, Machteld Maria Mertens, Xiaobing Feng, Marc H. Anthonis, Bart Schoofs
  • Publication number: 20050000860
    Abstract: A process for reforming wherein ethylbenzene formed during the reforming is converted to xylenes. The process is carried out by reforming a feed containing precursors of ethylbenzene with a reforming catalyst under conditions effective to reform said feed; wherein the reforming catalyst is contained in a reactor which contains a second catalyst effective under said conditions to convert ethylbenzene to xylenes. The resulting product contains reduced amounts of ethylbenzene and increased amounts of xylenes.
    Type: Application
    Filed: July 1, 2003
    Publication date: January 6, 2005
    Inventors: Xiaobing Feng, Jain-Kai Hung, Gary Mohr, Krishna Rao
  • Publication number: 20050000859
    Abstract: A process for reforming a hydrocarbon feed containing precursors of ethylbenzene, e.g., C8 isoalkane and/or C8 isoalkene precursors of ethylbenzene, that results in the formation of reduced amounts of ethylbenzene. The process is carried out in a catalytic reforming unit comprised of a plurality of operatively connected reactors comprising at least one lead reforming reactor and a tail reforming reactor. The process is carried out by reforming the feed in at least one lead reactor which contains a first reforming catalyst and a catalyst effective for converting ethylbenzene and further reforming the product of the lead reactor in the tail reactor that contains a second reforming catalyst.
    Type: Application
    Filed: July 1, 2003
    Publication date: January 6, 2005
    Inventors: Jain-Kai Hung, Thomas Colle, Xiaobing Feng, Gary Mohr, Krishna Rao
  • Patent number: 6811684
    Abstract: There is provided a process for converting hydrocarbons using a catalyst comprising macrostructures having a three-dimensional network of particles comprised of porous inorganic material. The particles of the macrostructures occupy less than 75% of the total volume of the macrostructures and are joined together to form a three-dimensional interconnected network comprised of pores having diameters greater than about 20 Å. The macrostructures can be made by forming an admixture containing a porous organic ion exchanger and a synthesis mixture capable of forming the porous inorganic material; converting the synthesis mixture to the porous inorganic material; and removing the porous organic ion exchanger from the inorganic material.
    Type: Grant
    Filed: April 25, 2002
    Date of Patent: November 2, 2004
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Gary David Mohr, Wilfried Jozef Mortier, Xiaobing Feng, Per Johan Sterte, Lubomira Borislavova Tosheva
  • Publication number: 20040198586
    Abstract: There is provided a process for converting hydrocarbons using a catalyst comprising macrostructures having a three-dimensional network of particles comprised of porous inorganic material. The particles of the macrostructures occupy less than 75% of the total volume of the macrostructures and are joined together to form a three-dimensional interconnected network comprised of pores having diameters greater than about 20 Å. The macrostructures can be made by forming an admixture containing a porous organic ion exchanger and a synthesis mixture capable of forming the porous inorganic material; converting the synthesis mixture to the porous inorganic material; and removing the porous organic ion exchanger from the inorganic material.
    Type: Application
    Filed: April 20, 2004
    Publication date: October 7, 2004
    Inventors: Gary David Mohr, Wilfried Jozef Mortier, Xiaobing Feng, Per Johan Sterte, Lubomira Borislavova Tosheva
  • Patent number: 6787023
    Abstract: There is provided a catalyst containing porous macrostructures comprised of: (a) a three-dimensional network of particles of porous inorganic material (e.g., zeolites); and, (b) at least one metal (e.g., a catalytically active metal). The particles of the at least one macrostructure occupy less than 75% of the total volume of the at least one macrostructure and are jointed together to form a three-dimensional interconnected network. The three-dimensional interconnected network will usually be comprised of pores having diameters greater than about 20 Å. The macrostructures can be made by forming an admixture containing a porous organic ion exchanger (e.g., a polymer-based ion exchange resin) and a synthesis mixture (e.g., for zeolite formation) capable of forming the porous inorganic material and the at least one metal; converting the synthesis mixture to the porous inorganic material; and removing the porous organic ion exchanger from the inorganic material.
    Type: Grant
    Filed: May 20, 2000
    Date of Patent: September 7, 2004
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Gary David Mohr, Wilfried Jozef Mortier, Xiaobing Feng, Per Johan Sterte, Lubomira Borislavova Tosheva
  • Publication number: 20040158111
    Abstract: A process is provided for the production of xylenes from reformate. The process is carried out by methylating under conditions effective for the methylation, the benzene/toluene present in the reformate outside the reforming loop, to produce a resulting product having a higher xylenes content than the reformate. Greater than equilibrium amounts of para-xylene can be produced by the process.
    Type: Application
    Filed: December 24, 2003
    Publication date: August 12, 2004
    Inventors: David L. Johnson, Robert G. Tinger, Robert A. Ware, John S. Buchanan, Xiaobing Feng, Shifang Luo, Gary D. Mohr
  • Publication number: 20040087822
    Abstract: There is provided a process for aromatics conversion by contacting a feed suitable for aromatics conversion under conversion condition and in the presence of a catalyst comprising ITQ-13. Examples of such conversion processes include isomerization of aromatic (xylenes) feedstock, disproportionation of toluene to benzene and xylenes, alkylation and transalkylation of aromatics, conversion of light paraffins and light olefins to aromatics, conversion of naphtha to aromatics, and conversion of alcohol to aromatics.
    Type: Application
    Filed: November 1, 2002
    Publication date: May 6, 2004
    Inventors: John Scott Buchanan, Jihad Mohammed Dakka, Xiaobing Feng, Jose Guadalupe Santiesteban
  • Publication number: 20040044261
    Abstract: A process for selectively producing para-xylene from a feedstock enriched in C8 isoalkanes and/or isoalkenes is disclosed. The feed is contacted with Group VIII metal loaded molecular sieve catalyst of low acidity under dehydrocyclization conditions wherein the molecular sieve has a channel size ranging from about 5-8 Angstroms and a 10 to 12 membered ring structure containing at least two elements selected from the group consisting of Si, Al, P, Ge, Ga and Ti.
    Type: Application
    Filed: September 4, 2003
    Publication date: March 4, 2004
    Inventors: Xiaobing Feng, Thomas H. Colle, Gary D. Mohr
  • Patent number: 6699811
    Abstract: There is provided a zeolite bound zeolite catalyst which does not contain significant amount of non-zeolitic binder and can be tailored to optimize its performance and a process for converting hydrocarbons utilizing the zeolite bound zeolite catalyst. The zeolite bound zeolite catalyst comprises core crystals containing first crystals of a first zeolite and optionally second crystals of a second zeolite having a composition, structure type, or both that is different from said first zeolite and binder crystals containing third crystals of a third zeolite and optionally fourth crystals of a fourth zeolite having a composition, structure type, or both that is different from said third zeolite. If the core crystals do not contain the second crystals of the second zeolite, then the binder crystals must contain the fourth crystals of the fourth zeolite. The zeolite bound zeolite finds application in hydrocarbon conversion processes, e.g.
    Type: Grant
    Filed: May 5, 2000
    Date of Patent: March 2, 2004
    Assignee: Exxon Mobil Chemical Patents Inc.
    Inventors: Gary David Mohr, Kenneth Ray Clem, Wilfried Jozef Mortier, Machteld Maria Mertens, Xiaobing Feng, Marc H. Anthonis, Bart Schoofs
  • Publication number: 20040030210
    Abstract: A process is provided for the production of xylenes from reformate. The process is carried out by methylating the benzene, toluene, or both present in the reformate to produce a resulting product having a higher xylenes content than the reformate. Greater than equilibrium amounts of para-xylene can be produced by the process.
    Type: Application
    Filed: June 18, 2003
    Publication date: February 12, 2004
    Inventors: Gary D. Mohr, John Scott Buchanan, Robert A. Crane, Jihad M. Dakka, Xiaobing Feng, Larry L. Laccino, Shifang L. Luo
  • Publication number: 20040029716
    Abstract: There is provided a zeolite bound zeolite catalyst which does not contain significant amount of non-zeolitic binder and can be tailored to optimize its performance and a process for converting hydrocarbons utilizing the zeolite bound zeolite catalyst. The zeolite bound zeolite catalyst comprises core crystals containing first crystals of a first zeolite and optionally second crystals of a second zeolite having a composition, structure type, or both that is different from said first zeolite and binder crystals containing third crystals of a third zeolite and optionally fourth crystals of a fourth zeolite having a composition, structure type, or both that is different from said third zeolite. If the core crystals do not contain the second crystals of the second zeolite, then the binder crystals must contain the fourth crystals of the fourth zeolite. The zeolite bound zeolite finds application in hydrocarbon conversion processes, e.g.
    Type: Application
    Filed: August 6, 2003
    Publication date: February 12, 2004
    Inventors: Gary David Mohr, Kenneth Ray Clem, Wilfried Jozef Mortier, Machteld Maria Mertens, Xiaobing Feng, Marc H. Anthonis, Bart Schoofs
  • Publication number: 20040015027
    Abstract: A process is provided for the production of xylenes from reformate. The process is carried out by methylating under conditions effective for the methylation, the benzene/toluene present in the reformate outside the reforming loop, to produce a resulting product having a higher xylenes content than the reformate. Greater than equilibrium amounts of para-xylene can be produced by the process.
    Type: Application
    Filed: June 18, 2003
    Publication date: January 22, 2004
    Inventors: Larry L. Iaccino, Jeevan S. Abichandani, John Scott Buchanan, Robert A. Crane, Jihad M. Dakka, Xiaobing Feng, Shifang L. Luo, Gary D. Mohr
  • Patent number: 6660896
    Abstract: In a process for isomerizing a feed comprising ethylbenzene and a mixture of xylene isomers, the feed is first contacted under xylene isomerization conditions with a first catalyst composition to produce an intermediate product having a higher para-xylene concentration than the feed, and then the intermediate product is contacted under ethylbenzene isomerization conditions with a second catalyst composition. The second catalyst composition comprises a hydrogenation-dehydrogenation component and a molecular sieve having 10-membered ring pores and is effective to selectively isomerize at least part of the ethylbenzene in the intermediate product to para-xylene and thereby produce a further product having a para-xylene concentration greater than the equilibrium concentration of para-xylene at said ethylbenzene isomerization conditions.
    Type: Grant
    Filed: April 16, 2003
    Date of Patent: December 9, 2003
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: John Scott Buchanan, Xiaobing Feng, Gary David Mohr, David L. Stern
  • Patent number: 6653518
    Abstract: A process for selectively producing para-xylene from a feedstock enriched in C8 isoalkanes and/or isoalkenes is disclosed. The feed is contacted with Group VIII metal loaded molecular sieve catalyst of low acidity under dehydrocyclization conditions wherein the molecular sieve has a channel size ranging from about 5-8 Angstroms and a 10 to 12 membered ring structure containing at least two elements selected from the group consisting of Si, Al, P, Ge, Ga and Ti.
    Type: Grant
    Filed: June 15, 2001
    Date of Patent: November 25, 2003
    Assignee: ExxonMobil Chemical Patents Inc
    Inventors: Xiaobing Feng, Thomas H. Colle, Gary D. Mohr
  • Patent number: 6642407
    Abstract: This invention provides a process for purifying the crude aromatic dicarboxylic acids produced by oxidation of dialkyl aromatic hydrocarbons and for using the purified acids in the preparation of polyethylene terephthalate, polyethylene naphthalate and other polyesters. The invention simplifies the manufacturing process by converting the crude aromatic acids into bis-glycol esters in an esterification reactor 4, from which the esterified partial oxidation impurities present in the oxidation product are removed by distillation in distillation tower 5. After removal of the volatile impurities, the dicarboxylic acid esters can separated by distillation in distillation tower 6 or by crystallization and converted to polyesters by polycondensation. The volatile impurities removed as overhead from tower 5 can be recycled as stream 16 to the oxidation reactor where they act as oxidation promoters thereby optionally allowing for a bromine-free oxidation process for dialkyl aromatic hydrocarbons.
    Type: Grant
    Filed: April 26, 2002
    Date of Patent: November 4, 2003
    Assignee: Exxon Mobil Chemical Patents Inc.
    Inventors: Krishna Kulai Rao, Russell D. Sellen, Xiaobing Feng, James Spanswick, William F. Huber, Jr.
  • Publication number: 20030113248
    Abstract: There is provided a catalyst containing porous macrostructures comprised of: (a) a three-dimensional network of particles of porous inorganic material; and, (b) at least one metal. The particles of the at least one macrostructure occupy less than 75% of the total volume of the at least one macrostructure and are jointed together to form a three-dimensional interconnected network. The three-dimensional interconnected network will usually be comprised of pores having diameters greater than about 20 Å. The macrostructures can be made by forming an admixture containing a porous organic ion exchanger and a synthesis mixture capable of forming the porous inorganic material and the at least one metal; converting the synthesis mixture to the porous inorganic material; and removing the porous organic ion exchanger from the inorganic material. The metal-containing macrostructures find application in hydrocarbon conversion and in the reduction of emissions.
    Type: Application
    Filed: March 11, 2002
    Publication date: June 19, 2003
    Inventors: Gary David Mohr, Wilfried Jozef Mortier, Xiaobing Feng, Per Johan Sterte, Lubomira Borislavova Tosheva
  • Publication number: 20030105372
    Abstract: A process is disclosed for selectively producing one or more aromatic compounds selected from benzene, toluene, para-xylene, meta-xylene, ortho-xylene, ethylbenzene and mixtures thereof from a feed containing C6-C20 hydrocarbons and/or C6-C8 alcohols. The feed is initially subjected to a chemical conversion step to increase the concentration of C6-C8 paraffin and/or olefin precursors of said one or more aromatic compounds and then resulting precursor-enriched feed is then contacted with a dehydrocyclization catalyst under conditions of temperature and hydrogen partial pressure sufficient to effect dehydrocyclization of said paraffin and/or olefin precursors. A product rich in the desired aromatic compound(s) can then be recovered from the dehydrocyclization effluent.
    Type: Application
    Filed: October 30, 2002
    Publication date: June 5, 2003
    Inventors: Xiaobing Feng, Thomas Herman Colle, Gary David Mohr
  • Publication number: 20030018231
    Abstract: A method is provided for converting oxygenates, e.g., methanol, to olefins, e.g., ethylene and propylene, comprising contacting said oxygenates and an aromatics co-feed, e.g., xylenes, with a framework gallium-containing molecular sieve catalyst comprising pores having a size ranging from about 5.0 Angstroms to about 7.0 Angstroms, e.g., ZSM-5, under production conditions effective to produce olefins. A catalyst composition is also provided, comprising a ZSM-5 zeolite-bound ZSM-5 zeolite having a bound zeolite of framework Ga-containing zeolite having a Si/Ga molar ratio ranging from 5 to 500 and a binder of Ga-modified, e.g., Ga-exchanged and/or Ga-impregnated, zeolite having a Si/Ga molar ratio ranging from 5 to ∞.
    Type: Application
    Filed: June 26, 2001
    Publication date: January 23, 2003
    Inventors: Teng Xu, Jeffrey L. White, Xiaobing Feng, Gary D. Mohr, Brenda A. Raich
  • Publication number: 20030004381
    Abstract: A process for selectively producing para-xylene from a feedstock enriched in C8 isoalkanes and/or isoalkenes is disclosed. The feed is contacted with Group VIII metal loaded molecular sieve catalyst of low acidity under dehydrocyclization conditions wherein the molecular sieve has a channel size ranging from about 5-8 Angstroms and a 10 to 12 membered ring structure containing at least two elements selected from the group consisting of Si, Al, P, Ge, Ga and Ti.
    Type: Application
    Filed: June 15, 2001
    Publication date: January 2, 2003
    Inventors: Xiaobing Feng, Thomas H. Colle, Gary D. Mohr