Patents by Inventor Xiaochan LI

Xiaochan LI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11257935
    Abstract: The present invention discloses a method for preparing a GaN rectifier suitable for operating at an alternating current frequency of 35 GHz: sequentially growing, on a silicon substrate, an N-polar GaN buffer layer, a carbon doped semi-insulated N-polar GaN layer, a non-doped N-polar AlGaN layer, a non-doped N-polar GaN layer and a non-doped N-polar InGaN thin film to obtain a rectifier epitaxial wafer; preparing a pattern groove for a schottky contact electrode on the GaN rectifier epitaxial wafer, and depositing the schottky contact electrode in the groove; preparing a pattern for an ohmic contact electrode, and depositing a device ohmic contact electrode on the surface of the epitaxial wafer; subsequently, depositing a silicon nitride passivation layer at a part where there is no electrode on the surface of the epitaxial wafer, and preparing a surface electrode area; and finally, performing mesa isolation treatment on the GaN rectifier epitaxial wafer.
    Type: Grant
    Filed: January 31, 2018
    Date of Patent: February 22, 2022
    Assignee: SOUTH CHINA UNIVERSITY OF TECHNOLOGY
    Inventors: Wenliang Wang, Guoqiang Li, Xiaochan Li, Yuan Li
  • Publication number: 20210217879
    Abstract: The present invention discloses a method for preparing a GaN rectifier suitable for operating at an alternating current frequency of 35 GHz: sequentially growing, on a silicon substrate, an N-polar GaN buffer layer, a carbon doped semi-insulated N-polar GaN layer, a non-doped N-polar AlGaN layer, a non-doped N-polar GaN layer and a non-doped N-polar InGaN thin film to obtain a rectifier epitaxial wafer; preparing a pattern groove for a schottky contact electrode on the GaN rectifier epitaxial wafer, and depositing the schottky contact electrode in the groove; preparing a pattern for an ohmic contact electrode, and depositing a device ohmic contact electrode on the surface of the epitaxial wafer; subsequently, depositing a silicon nitride passivation layer at a part where there is no electrode on the surface of the epitaxial wafer, and preparing a surface electrode area; and finally, performing mesa isolation treatment on the GaN rectifier epitaxial wafer.
    Type: Application
    Filed: January 31, 2018
    Publication date: July 15, 2021
    Inventors: Wenliang WANG, Guoqiang LI, Xiaochan LI, Yuan LI