Patents by Inventor Xiaocong Guo

Xiaocong Guo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8347483
    Abstract: An ultrasound transducer includes an array of PZT elements mounted on a non-recessed distal surface of a backing block. Between each element and the backing block is a conductive region formed as a portion of a metallic layer sputtered onto the distal surface. Traces on a longitudinally extending circuit board—preferably, a substantially rigid printed circuit board, which may be embedded within the block—connect the conductive region, and thus the PZT element, with any conventional external ultrasound imaging system. A substantially “T” or “inverted-L” shaped electrode is thereby formed for each element, with no need for soldering. At least one longitudinally extending metallic member mounted on a respective lateral surface of the backing block forms a heat sink and a common electrical ground. A thermally and electrically conductive layer, such as of foil, transfers heat from at least one matching layer mounted on the elements to the metallic member.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: January 8, 2013
    Assignee: MR Holdings (HK) Limited
    Inventor: Xiaocong Guo
  • Patent number: 8084923
    Abstract: An ultrasound transducer includes an array of PZT elements mounted on a non-recessed distal surface of a backing block. Between each element and the backing block is a conductive region formed as a portion of a metallic layer sputtered onto the distal surface. Traces on a longitudinally extending circuit board—preferably, a substantially rigid printed circuit board, which may be embedded within the block—connect the conductive region, and thus the PZT element, with any conventional external ultrasound imaging system. A substantially “T” or “inverted-L” shaped electrode is thereby formed for each element, with no need for soldering. At least one longitudinally extending metallic member mounted on a respective lateral surface of the backing block forms a heat sink and a common electrical ground. A thermally and electrically conductive layer, such as of foil, transfers heat from at least one matching layer mounted on the elements to the metallic member.
    Type: Grant
    Filed: September 7, 2010
    Date of Patent: December 27, 2011
    Assignee: MR Holdings (HK) Limited
    Inventor: Xiaocong Guo
  • Publication number: 20110088248
    Abstract: An ultrasound transducer includes an array of PZT elements mounted on a non-recessed distal surface of a backing block. Between each element and the backing block is a conductive region formed as a portion of a metallic layer sputtered onto the distal surface. Traces on a longitudinally extending circuit board—preferably, a substantially rigid printed circuit board, which may be embedded within the block—connect the conductive region, and thus the PZT element, with any conventional external ultrasound imaging system. A substantially “T” or “inverted-L” shaped electrode is thereby formed for each element, with no need for soldering. At least one longitudinally extending metallic member mounted on a respective lateral surface of the backing block forms a heat sink and a common electrical ground. A thermally and electrically conductive layer, such as of foil, transfers heat from at least one matching layer mounted on the elements to the metallic member.
    Type: Application
    Filed: December 20, 2010
    Publication date: April 21, 2011
    Applicant: MR HOLDINGS (HK) LTD.
    Inventor: Xiaocong Guo
  • Publication number: 20100327698
    Abstract: An ultrasound transducer includes an array of PZT elements mounted on a non-recessed distal surface of a backing block. Between each element and the backing block is a conductive region formed as a portion of a metallic layer sputtered onto the distal surface. Traces on a longitudinally extending circuit board—preferably, a substantially rigid printed circuit board, which may be embedded within the block—connect the conductive region, and thus the PZT element, with any conventional external ultrasound imaging system. A substantially “T” or “inverted-L” shaped electrode is thereby formed for each element, with no need for soldering. At least one longitudinally extending metallic member mounted on a respective lateral surface of the backing block forms a heat sink and a common electrical ground. A thermally and electrically conductive layer, such as of foil, transfers heat from at least one matching layer mounted on the elements to the metallic member.
    Type: Application
    Filed: September 7, 2010
    Publication date: December 30, 2010
    Applicant: MR HOLDINGS (HK) LTD.
    Inventor: Xiaocong Guo
  • Patent number: 7834522
    Abstract: An ultrasound transducer includes an array of PZT elements mounted on a non-recessed distal surface of a backing block. Between each element and the backing block is a conductive region formed as a portion of a metallic layer sputtered onto the distal surface. Traces on a longitudinally extending circuit board—preferably, a substantially rigid printed circuit board, which may be embedded within the block—connect the conductive region, and thus the PZT element, with any conventional external ultrasound imaging system. A substantially “T” or “inverted-L” shaped electrode is thereby formed for each element, with no need for soldering. At least one longitudinally extending metallic member mounted on a respective lateral surface of the backing block forms a heat sink and a common electrical ground. A thermally and electrically conductive layer, such as of foil, transfers heat from at least one matching layer mounted on the elements to the metallic member.
    Type: Grant
    Filed: August 3, 2007
    Date of Patent: November 16, 2010
    Assignee: MR Holdings (HK) Limited
    Inventor: Xiaocong Guo
  • Publication number: 20090034370
    Abstract: An ultrasound transducer includes an array of PZT elements mounted on a non-recessed distal surface of a backing block. Between each element and the backing block is a conductive region formed as a portion of a metallic layer sputtered onto the distal surface. Traces on a longitudinally extending circuit board—preferably, a substantially rigid printed circuit board, which may be embedded within the block—connect the conductive region, and thus the PZT element, with any conventional external ultrasound imaging system. A substantially “T” or “inverted-L” shaped electrode is thereby formed for each element, with no need for soldering. At least one longitudinally extending metallic member mounted on a respective lateral surface of the backing block forms a heat sink and a common electrical ground. A thermally and electrically conductive layer, such as of foil, transfers heat from at least one matching layer mounted on the elements to the metallic member.
    Type: Application
    Filed: August 3, 2007
    Publication date: February 5, 2009
    Inventor: Xiaocong Guo
  • Publication number: 20060173343
    Abstract: Electronic cross-talk is reduced in an ultrasound transducer. Ground traces are interleaved with signal traces on a flexible film. By providing ground traces between the signal traces, the electrical cross-talk between signal traces is reduced.
    Type: Application
    Filed: December 17, 2004
    Publication date: August 3, 2006
    Inventors: Xiaocong Guo, Grazyna Palczewska, Todor Sheljaskow, Ellen Rowland, Haifeng Wang
  • Patent number: 6994674
    Abstract: A multi-dimensional transducer array has pitch along one dimension less than the pitch along a second dimension. The multi-dimensional transducer array with the same or different pitch is manufactured from a plurality of modules. Each of the modules are separately diced and then aligned and combined. Elements of a transducer array are used for isolating a transmit channel from a receive channel. Separate signal lines or traces are provided individually for each element on opposite sides of each element. A transmit channel may connect to one electrode on an element, and the receive channel may connect to an opposite electrode on the element. A multi-dimensional array is provided for time division multiplex processing. A probe houses the multi-dimensional array and a multiplexer.
    Type: Grant
    Filed: June 27, 2002
    Date of Patent: February 7, 2006
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Todor Sheljaskow, Grazyna Palczewska, Stephen C. Englund, Thomas G. Houck, Gregg W. Frey, Ron Ho, Sevig Ayter, Xiaocong Guo
  • Publication number: 20050148877
    Abstract: Methods, systems, and probes are provided for medical ultrasound imaging. By using larger segments for transmit than receive or by using a sparse sampling of elements on transmit than used for receive, the number of transmit beamformer channels relative to receive beamformer channels is reduced. Where the transmit waveformed generators of the transmit beamformer channels are positioned within an ultrasound probe, the space and power requirements of the transmit beamformer channels are reduced based on the reduction in number of transmit segments. Different approaches may be used for reducing the number of transmit channels relative to receive segments. For example, a flexible circuit is connected to one side of a multi-dimensional array and defines transmit segments as groups of two or more elements. A different flexible circuit connects on an opposite side of the elements. The different flexible circuit defines receive segments as individual elements or a fewer number of elements than the transmit segments.
    Type: Application
    Filed: December 17, 2003
    Publication date: July 7, 2005
    Inventors: Xiaocong Guo, Todor Sheljaskow, Linxin Yao, Grazyna Palczewska
  • Publication number: 20040002656
    Abstract: Transducer arrays and methods of manufacturing the transducer arrays are provided. A multi-dimensional transducer array is provided where the element-to-element spacing or pitch along one dimension is less than the element spacing or pitch along a second dimension. For example, the element pitch along an azimuth dimension is ½ of the element pitch along an elevation dimension. The multi-dimensional transducer array with the same or different pitch is manufactured from a plurality of modules. Each of the modules are separately diced and then aligned and combined. Separate dicing allows for individual testing of modules prior to assembly as a transducer array. Elements of a transducer array are used for isolating a transmit channel from a receive channel. Rather than a sheet of electrode acting as a ground plane common to a plurality of elements, separate signal lines or traces are provided individually for each element on opposite sides of each element.
    Type: Application
    Filed: June 27, 2002
    Publication date: January 1, 2004
    Applicant: Siemens Medical Solutions USA, Inc.
    Inventors: Todor Sheljaskow, Grazyna Palczewska, Stephen C. Englund, Thomas G. Houck, Gregg W. Frey, Ron Ho, Sevig Ayter, Xiaocong Guo
  • Patent number: 6359375
    Abstract: An ultrasound transducer array (250) in which the piezoelectric layer (256) and the matching layer(s) (258) have different sub-dicing. In one embodiment, the piezoelectric layer (256) is diced only once and the matching layer(s) (258) is diced more than once. A resulting transducer shows improved bandwidth, crosstalk and noise performance.
    Type: Grant
    Filed: May 6, 1999
    Date of Patent: March 19, 2002
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Xiaocong Guo, Thomas G. Houck
  • Patent number: 6160340
    Abstract: An ultrasonic transducer has a center row of transducers operating at a center row frequency and first and second outer rows of transducers operating at a common frequency or different frequencies lower than the center row frequency. In an enhancement of the ultrasonic transducer array, the center row of transducers has a matching layer with an acoustic velocity that is higher than matching layers that are associated with the first outer row and second outer row transducers. The matching layers can be selected such that the overall thickness of the transducer array is constant. A 1.5D ultrasonic transducer array operating at a higher center frequency and lower outer frequencies is adjustable to allow high resolution near field imaging in addition to better far field imaging without the need for a 2D transducer array.
    Type: Grant
    Filed: November 18, 1998
    Date of Patent: December 12, 2000
    Assignee: Siemens Medical Systems, Inc.
    Inventors: Xiaocong Guo, Christopher S. Chapman, Qinglin Ma