Patents by Inventor Xiaodi REN

Xiaodi REN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240104918
    Abstract: The present invention discloses a non-interferometric, non-iterative complex amplitude reading method and apparatus. The reading method includes the following steps: diffracting a light beam containing amplitude information and phase information to obtain a diffraction pattern with intensity variations; constructing a diffraction intensity-complex amplitude model and training it based on the correlation between the diffraction pattern and amplitude information and phase information, and applying the trained model directly to new diffraction images to obtain amplitude information and phase information. The method can achieve detection of complex amplitude information, including amplitude and phase, from a single diffraction image, improve the stability and accuracy of phase reading results, increase the calculation speed, and simplify the optical system. It is suitable for applications in holographic storage, biomedical image processing, and microscopic imaging, among others.
    Type: Application
    Filed: June 25, 2023
    Publication date: March 28, 2024
    Applicant: Fujian Normal University
    Inventors: Jianying Hao, Xiaodi Tan, Xiao Lin, Yuhong Ren
  • Patent number: 11094966
    Abstract: Disclosed herein are embodiments of an electrolyte that is stable and efficient at high voltages. The electrolyte can be used in combination with certain cathodes that exhibit poor activity at such high voltages with other types of electrolytes and can further be used in combination with a variety of anodes. In some embodiments, the electrolyte can be used in battery systems comprising a lithium cobalt oxide cathode and lithium metal anodes, silicon anodes, silicon/graphite composite anodes, graphite anodes, and the like.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: August 17, 2021
    Assignee: Battelle Memorial Institute
    Inventors: Xiaodi Ren, Wu Xu, Ji-Guang Zhang
  • Patent number: 10854923
    Abstract: Low flammability and nonflammable localized superconcentrated electrolytes (LSEs) for stable operation of lithium and sodium ion batteries are disclosed. Electrochemical devices including the low flammability and nonflammable LSEs are also disclosed. The low flammability and nonflammable LSEs include an active salt, a solvent comprising a flame retardant compound, wherein the active salt is soluble in the solvent, and a diluent in which the active salt is insoluble or poorly soluble. The LSE may further include a cosolvent, such as a carbonate, a sulfone, a sulfite, a sulfate, a carboxylate, an ether, a nitrogen-containing solvent, or any combination thereof. In certain embodiments, such as when the solvent and diluent are immiscible, the LSE further includes a bridge solvent.
    Type: Grant
    Filed: August 31, 2018
    Date of Patent: December 1, 2020
    Assignee: Battelle Memorial Institute
    Inventors: Wu Xu, Shuru Chen, Ji-Guang Zhang, Xia Cao, Haiping Jia, Bin Liu, Xiaodi Ren
  • Publication number: 20190140322
    Abstract: Disclosed herein are embodiments of an electrolyte that is stable and efficient at high voltages. The electrolyte can be used in combination with certain cathodes that exhibit poor activity at such high voltages with other types of electrolytes and can further be used in combination with a variety of anodes. In some embodiments, the electrolyte can be used in battery systems comprising a lithium cobalt oxide cathode and lithium metal anodes, silicon anodes, silicon/graphite composite anodes, graphite anodes, and the like.
    Type: Application
    Filed: December 21, 2018
    Publication date: May 9, 2019
    Inventors: Xiaodi Ren, Wu Xu, Ji-Guang Zhang
  • Publication number: 20190123390
    Abstract: Low flammability and nonflammable localized superconcentrated electrolytes (LSEs) for stable operation of lithium and sodium ion batteries are disclosed. Electrochemical devices including the low flammability and nonflammable LSEs are also disclosed. The low flammability and nonflammable LSEs include an active salt, a solvent comprising a flame retardant compound, wherein the active salt is soluble in the solvent, and a diluent in which the active salt is insoluble or poorly soluble. The LSE may further include a cosolvent, such as a carbonate, a sulfone, a sulfite, a sulfate, a carboxylate, an ether, a nitrogen-containing solvent, or any combination thereof. In certain embodiments, such as when the solvent and diluent are immiscible, the LSE further includes a bridge solvent.
    Type: Application
    Filed: August 31, 2018
    Publication date: April 25, 2019
    Inventors: Wu Xu, Shuru Chen, Ji-Guang Zhang, Xia Cao, Haiping Jia, Bin Liu, Xiaodi Ren
  • Publication number: 20160006089
    Abstract: Potassium-oxygen (K—O2) batteries based on potassium superoxide (KO2) are provided. The K—O2 batteries can exhibit high specific energy a low discharge/charge potential gap (e.g., a discharge/charge potential gap of less than 50 mV at a current density of 0.16 mA/cm2) without the use of any catalysts. The discharge product of the K—O2 batteries is K—O2, which is both kinetically stable and thermodynamically stable. As a consequence of the stability of the discharge product, the K—O2 batteries can exhibit improved operational stability relative to other metal-air batteries.
    Type: Application
    Filed: January 23, 2014
    Publication date: January 7, 2016
    Inventors: Yiying WU, Xiaodi REN