Patents by Inventor Xiaodong Mu

Xiaodong Mu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11161745
    Abstract: The present disclosure relates to a carbon-based porous material microscopically exhibiting a three-dimensional cross-linked net-like hierarchical pore structures with micropores nested in mesopores that are in turn nested in macropores. Such material provides for accelerated adsorption and desorption rates and lower desorption temperatures for recovery of organic gas molecules.
    Type: Grant
    Filed: May 26, 2017
    Date of Patent: November 2, 2021
    Assignees: CHINA PETROLEUM AND CHEMICAL CORPORATION, SINOPEC RESEARCH INSTITUTE OP SAFETY ENGINEERING
    Inventors: Shanjun Mu, Yuxin Zhao, Chunming Jiang, Quanzhen Liu, Weihua Zhang, Lin Wang, Shucai Zhang, Xiaodong Mu
  • Patent number: 11131591
    Abstract: The present invention belongs to the technical field of joint surface pressure detection of connecting pieces, and provides an FBG sensor-based bolt fastening joint surface pressure detection method, comprising the steps of determining the size and the position of an FBG sensor; and determining the pressure of a joint surface measuring position on the basis of the single bolt connection joint surface pressure distribution theory, and completing calibration in real-time correspondence to the strain and pressure values to realize precise detection of the joint surface pressure. Determining the size and the position of the FBG sensor embedding slot according to the above method can ensure the reliability and accuracy of strain information; and an accurate strain-joint surface pressure curve can be obtained in combination with the determination of the joint surface pressure, which provides a practical and feasible method for the research on the bolt connection joint surface pressure.
    Type: Grant
    Filed: August 22, 2018
    Date of Patent: September 28, 2021
    Assignee: DALIAN UNIVERSITY OF TECHNOLOGY
    Inventors: Qingchao Sun, Xiaodong Li, Qingyuan Lin, Xiaokai Mu
  • Publication number: 20210283442
    Abstract: A foam production method includes mixing liquid nitrogen with a foaming material to produce foam. A gas is produced in situ from liquid nitrogen. As the ratio of the volume of the gas produced by gasification of liquid nitrogen to the volume of the liquid nitrogen is relatively high, when a large gas supply flow is needed to generate a large foam flow, a liquid nitrogen storage device of a small volume can be used instead of bulky air supply devices such as high-pressure gas cylinders, air compressors, air compressor sets and the like, reducing the volume of the air supply device. In addition, the liquid nitrogen used in foaming will release nitrogen gas after the foam blast, such that the nitrogen is also able to inhibit combustion on the surface of burning materials, accelerating the extinguishing of the fire.
    Type: Application
    Filed: February 26, 2018
    Publication date: September 16, 2021
    Applicants: CHINA PETROLEUM & CHEMICAL CORPORATION, CHINA PETROLEUM & CHEMICAL CORPORATION QINGDAO RESEARCH INSTITUTE OF SAFETY ENGINEERING
    Inventors: Shanjun MU, Chunming JIANG, Weihua ZHANG, Quanzhen LIU, Xuqing LANG, Xiaodong MU, Lin WANG, Jingfeng WU, Longmei TAN, Zuzheng SHANG, Rifeng ZHOU, Jianxiang LI, Hui YU
  • Publication number: 20210188649
    Abstract: A carbon-based porous material microscopically exhibiting a three-dimension 1 cross-linked net-like hierarchical pore structure, a specific surface area of 500˜2,500 m2/g and a water contact angle greater than 90°. The surface of the carbon-based porous material has a through hierarchical pore structure with mesopores nested in macropores and micropores nested in mesopores, the content of mesopores is high, and there are more adsorption activity sites exposed on the surface of the material, so that the diffusion path for organic gas molecules in the adsorption process is shortened. At the same time, the absorption and desorption rates may also be accelerated and the desorption temperature may be lowered. Furthermore, benefits result for solving the desorption and recovery problems of organic gas molecules. Moreover, the defects of ordinary porous carbon materials being easily hygroscopic, having a weakened capacity to adsorb target gas molecules in a humid environment, etc. are further effectively solved.
    Type: Application
    Filed: January 28, 2021
    Publication date: June 24, 2021
    Inventors: Shanjun MU, Yuxin ZHAO, Chunming JIANG, Quanzhen LIU, Weihua ZHANG, Lin WANG, Shucai ZHANG, Xiaodong MU
  • Publication number: 20190127227
    Abstract: A carbon-based porous material microscopically exhibiting a three-dimension 1 cross-linked net-like hierarchical pore structure, a specific surface area of 500˜2,500 m2/g and a water contact angle greater than 90°. The surface of the carbon-based porous material has a through hierarchical pore structure with mesopores nested in macropores and micropores nested in mesopores, the content of mesopores is high, and there are more adsorption activity sites exposed on the surface of the material, so that the diffusion path for organic gas molecules in the adsorption process is shortened. At the same time, the absorption and desorption rates may also be accelerated and the desorption temperature may be lowered. Furthermore, benefits result for solving the desorption and recovery problems of organic gas molecules. Moreover, the defects of ordinary porous carbon materials being easily hygroscopic, having a weakened capacity to adsorb target gas molecules in a humid environment, etc. are further effectively solved.
    Type: Application
    Filed: May 26, 2017
    Publication date: May 2, 2019
    Inventors: Yuxin ZHAO, Shanjun MU, Chunming JIANG, Quanzhen LIU, Weihua ZHANG, Lin WANG, Shucai ZHANG, Xiaodong MU
  • Patent number: 8189644
    Abstract: A laser assembly and method of operating the assembly are described in which a pump beam is directed through an end-pumped solid-state laser gain medium four or more times. The pump beam is directed at a slight angle through a first end of the medium, reflects off the inner surface of the second, opposite end (to form a “V”), and then reflected by an external or integrated mirror back through the first end and off the inner surface of the opposite end again (back through the “V”).
    Type: Grant
    Filed: April 26, 2010
    Date of Patent: May 29, 2012
    Assignee: Onyx Optics, Inc.
    Inventors: Xiaodong Mu, Helmuth E. Meissner
  • Publication number: 20120110820
    Abstract: Adhesive-free bond non-linear optical (NLO) components, devices and systems including one or more engineered quasi non-critical phase matched or contra-phase matched NLO crystal doublets. Such systems and devices advantageously increase the efficiency of NLO frequency conversion and improve beam quality. Devices are applicable to any uniaxial and biaxial NLO crystals in a wide range of wavelengths, e.g., from far ultraviolet to visible to far infrared. Devices employing engineered AFB NLO components according to certain embodiments include any conventional frequency converting architectures. Systems and methods are also provided to unambiguously determine and correct walk-off for any arbitrary uniaxial and biaxial crystal orientation.
    Type: Application
    Filed: January 13, 2012
    Publication date: May 10, 2012
    Applicant: ONYX Optics, Inc.
    Inventors: Xiaodong Mu, Helmuth E. Meissner, Huai-Chuan Lee
  • Patent number: 8102593
    Abstract: Adhesive-free bond non-linear optical (NLO) components, devices and systems including one or more engineered quasi non-critical phase matched or contra-phase matched NLO crystal doublets. Such systems and devices advantageously increase the efficiency of NLO frequency conversion and improve beam quality. Devices are applicable to any uniaxial and biaxial NLO crystals in a wide range of wavelengths, e.g., from far ultraviolet to visible to far infrared. Devices employing engineered AFB NLO components according to certain embodiments include any conventional frequency converting architectures. Systems and methods are also provided to unambiguously determine and correct walk-off for any arbitrary uniaxial and biaxial crystal orientation.
    Type: Grant
    Filed: May 27, 2010
    Date of Patent: January 24, 2012
    Assignee: Onyx Optics, Inc.
    Inventors: Xiaodong Mu, Helmuth E. Meissner, Huai-Chuan Lee
  • Publication number: 20110013264
    Abstract: Adhesive-free bond non-linear optical (NLO) components, devices and systems including one or more engineered quasi non-critical phase matched or contra-phase matched NLO crystal doublets. Such systems and devices advantageously increase the efficiency of NLO frequency conversion and improve beam quality. Devices are applicable to any uniaxial and biaxial NLO crystals in a wide range of wavelengths, e.g., from far ultraviolet to visible to far infrared. Devices employing engineered AFB NLO components according to certain embodiments include any conventional frequency converting architectures. Systems and methods are also provided to unambiguously determine and correct walk-off for any arbitrary uniaxial and biaxial crystal orientation.
    Type: Application
    Filed: May 27, 2010
    Publication date: January 20, 2011
    Applicant: ONYX Optics, Inc.
    Inventors: Xiaodong Mu, Helmuth E. Meissner, Huai-Chuan Lee
  • Publication number: 20100272130
    Abstract: A laser assembly and method of operating the assembly are described in which a pump beam is directed through an end-pumped solid-state laser gain medium four or more times. The pump beam is directed at a slight angle through a first end of the medium, reflects off the inner surface of the second, opposite end (to form a “V”), and then reflected by an external or integrated mirror back through the first end and off the inner surface of the opposite end again (back through the “V”).
    Type: Application
    Filed: April 26, 2010
    Publication date: October 28, 2010
    Applicant: ONYX Optics, Inc.
    Inventors: Xiaodong Mu, Helmuth E. Meissner