Patents by Inventor Xiaofan Niu
Xiaofan Niu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12170271Abstract: A micro-light-emitting diode (LED) display includes a number of micro-LED pixel elements and multiple optical sensors integrated with the micro-LED pixel elements. A transparent conductor layer is disposed over the micro-LED pixel elements and optical sensors.Type: GrantFiled: August 10, 2021Date of Patent: December 17, 2024Assignee: Apple Inc.Inventors: Xiaofan Niu, Sunggu Kang, Mohammad Yeke Yazdandoost, Giovanni Gozzini, Xia Li, Oray O. Cellek, Sandeep Chalasani, Steven E. Molesa, Jaein Choi
-
Publication number: 20240142684Abstract: An electronic device such as a wristwatch may be provided with conductive structures. The conductive structures may include a sensor electrode for an electrocardiogram (ECG) sensor. A coating may be disposed on the sensor electrode to reflect particular wavelengths of visible light so that the sensor electrode exhibits a desired color. The coating may include adhesion and transition layers on the sensor electrode, an opaque coloring layer on the adhesion and transition layers, and a thin-film interference filter on the opaque coloring layer. The thin-film interference filter may have an uppermost diamond-like carbon (DLC) layer. The DLC layer may contribute to the color response of the coating while concurrently minimizing noise in ECG waveforms gathered by the ECG sensor using the sensor electrode.Type: ApplicationFiled: October 13, 2023Publication date: May 2, 2024Inventors: Bin Fan, Brian S. Tryon, Xiaofan Niu, Chia-Yeh Lee, Frank C. Sit, Hien Minh H Le, Justin S. Shi, Shinjita Acharya, Ziqing Duan
-
Publication number: 20240074665Abstract: An electronic device includes a housing defining an internal volume, a front opening, and a rear opening. The electronic device can include a display component disposed at the front opening and a rear cover disposed at the rear opening. A logic board can be disposed in the internal volume. The device can also include a thin film thermopile including a cold junction bonded to the logic board and a hot junction bonded to the rear cover.Type: ApplicationFiled: December 28, 2022Publication date: March 7, 2024Inventors: Daniel J. Hiemstra, Jeffrey W. Buchholz, Xiaofan Niu, James C. Clements, Wei Lin, Habib S. Karaki, Paul Mansky, Boyi Fu, Yanfeng Chen, Edmilson Besseler
-
Patent number: 11803276Abstract: An electronic device with a force sensing device is disclosed. The electronic device comprises a user input surface defining an exterior surface of the electronic device, a first capacitive sensing element, and a second capacitive sensing element capacitively coupled to the first capacitive sensing element. The electronic device also comprises a first spacing layer between the first and second capacitive sensing elements, and a second spacing layer between the first and second capacitive sensing elements. The first and second spacing layers have different compositions. The electronic device also comprises sensing circuitry coupled to the first and second capacitive sensing elements configured to determine an amount of applied force on the user input surface. The first spacing layer is configured to collapse if the applied force is below a force threshold, and the second spacing layer is configured to collapse if the applied force is above the force threshold.Type: GrantFiled: December 9, 2020Date of Patent: October 31, 2023Assignee: Apple Inc.Inventors: Dhaval C. Patel, Eugene C. Cheung, Pey-Jiun Ko, Po-Jui Chen, Robert W. Rumford, Steve L. Terry, Wei Lin, Xiaofan Niu, Xiaoqi Zhou, Yi Gu, Yindar Chuo, Rasmi R. Das, Steven M. Scardato, Se Hyun Ahn, Victor H. Yin, Wookyung Bae, Christopher L. Boitnott, Chun-Hao Tung, Mookyung Son, Sunggu Kang, Nathan K. Gupta, John Z. Zhong
-
Patent number: 11771329Abstract: Embodiments include a temperature sensing device that includes a temperature sensor stack that includes a flexible substrate and an array of temperature sensors coupled to the flexible substrate. Each temperature sensor in the array of temperature sensors can include a conductive material defining a continuous pattern extending from a first node to a second node, a first set of conductive traces coupled to the flexible substrate, and a second set of conductive traces coupled to the flexible substrate. The temperature sensing device can include a processing circuit configured to apply an electrical signal across the conductive material of each temperature sensor using the first set of conductive traces, detect an effect of the conductive material of each temperature sensor on the electrical signal using the second set of conductive traces, and determine a temperature for the temperature sensors in the array using the detected effects of the conductive material on the electrical signal.Type: GrantFiled: September 24, 2020Date of Patent: October 3, 2023Assignee: Apple Inc.Inventors: Paul Mansky, Xiaofan Niu, James C. Clements, Mahmut Tosun, Michael Vosgueritchian
-
Patent number: 11755128Abstract: A stylus input device can allow a user to interface with an external electronic device. The stylus can provide an additional or alternative input to the external electronic device in response to a user applying a compressive force to the device housing. The stylus can include multiple sensors to provide a signal in response to the compressive force applied to the stylus.Type: GrantFiled: August 30, 2021Date of Patent: September 12, 2023Assignee: Apple Inc.Inventors: Alex J. Lehmann, Qiliang Xu, Blake R. Marshall, Nathaniel M. Parnell, Wesley W. Zuber, Henry N. Tsao, Xiaofan Niu, Pavan Gupta, Nahid Harjee, Paul X. Wang, Brenton A. Baugh
-
Publication number: 20230087411Abstract: An electronic device may include an infrared sensor with light sources and a quantum film photodetector. The light sources may emit short-wavelength infrared (SWIR) light through a display panel and the photodetector may receive the SWIR light through the panel after reflection off an object. The light sources and an integrated circuit may be mounted to a wall of a sensor module mounted to the panel. The module may include a lens. The photodetector may be disposed onto the rear wall, lens, integrated circuit, or display panel. The photodetector may include multiple types of quantum film to absorb different wavelengths of SWIR light. The SWIR light may pass through the display panel without distorting images emitted by the display panel. Using a quantum film in the photodetector may allow the photodetector to extend across a large surface area without unnecessarily increasing manufacturing cost for the device.Type: ApplicationFiled: September 23, 2021Publication date: March 23, 2023Inventors: Xiaofan Niu, Tong Chen, Mark T. Winkler, Zachary M. Beiley, Andras G. Pattantyus-Abraham
-
Patent number: 11460946Abstract: An electronic device includes an input device. The input device has an input/output module below or within a cover defining an input surface. The input/output module detects touch and/or force inputs on the input surface, and provides haptic feedback to the cover. In some instances, a haptic device is integrally formed with a wall or structural element of a housing or enclosure of the electronic device.Type: GrantFiled: June 28, 2021Date of Patent: October 4, 2022Assignee: Apple Inc.Inventors: Qiliang Xu, Alex J. Lehmann, Ming Yu, Xianwei Zhao, Xiaonan Wen, Shan Wu, Xiaofan Niu
-
Publication number: 20220100290Abstract: A stylus input device can allow a user to interface with an external electronic device. The stylus can provide an additional or alternative input to the external electronic device in response to a user applying a compressive force to the device housing. The stylus can include multiple sensors to provide a signal in response to the compressive force applied to the stylus.Type: ApplicationFiled: August 30, 2021Publication date: March 31, 2022Inventors: Alex J. LEHMANN, Qiliang XU, Blake R. MARSHALL, Nathaniel M. PARNELL, Wesley W. ZUBER, Henry N. TSAO, Xiaofan NIU, Pavan GUPTA, Nahid HARJEE, Paul X. WANG, Brenton A. BAUGH
-
Publication number: 20220087534Abstract: Embodiments include a temperature sensing device that includes a temperature sensor stack that includes a flexible substrate and an array of temperature sensors coupled to the flexible substrate. Each temperature sensor in the array of temperature sensors can include a conductive material defining a continuous pattern extending from a first node to a second node, a first set of conductive traces coupled to the flexible substrate, and a second set of conductive traces coupled to the flexible substrate. The temperature sensing device can include a processing circuit configured to apply an electrical signal across the conductive material of each temperature sensor using the first set of conductive traces, detect an effect of the conductive material of each temperature sensor on the electrical signal using the second set of conductive traces, and determine a temperature for the temperature sensors in the array using the detected effects of the conductive material on the electrical signal.Type: ApplicationFiled: September 24, 2020Publication date: March 24, 2022Inventors: Paul Mansky, Xiaofan Niu, James C. Clements, Mahmut Tosun, Michael Vosgueritchian
-
Publication number: 20220068900Abstract: A micro-light-emitting diode (LED) display includes a number of micro-LED pixel elements and multiple optical sensors integrated with the micro-LED pixel elements. A transparent conductor layer is disposed over the micro-LED pixel elements and optical sensors.Type: ApplicationFiled: August 10, 2021Publication date: March 3, 2022Inventors: Xiaofan NIU, Sunggu KANG, Mohammad YEKE YAZDANDOOST, Giovanni GOZZINI, Xia LI, Oray O. CELLEK, Sandeep CHALASANI, Steven E. MOLESA, Jaein CHOI
-
Publication number: 20210325993Abstract: An electronic device includes an input device. The input device has an input/output module below or within a cover defining an input surface. The input/output module detects touch and/or force inputs on the input surface, and provides haptic feedback to the cover. In some instances, a haptic device is integrally formed with a wall or structural element of a housing or enclosure of the electronic device.Type: ApplicationFiled: June 28, 2021Publication date: October 21, 2021Inventors: Qiliang Xu, Alex J. Lehmann, Ming Yu, Xianwei Zhao, Xiaonan Wen, Shan Wu, Xiaofan Niu
-
Patent number: 11054932Abstract: An electronic device includes an input device. The input device has an input/output module below or within a cover defining an input surface. The input/output module detects touch and/or force inputs on the input surface, and provides haptic feedback to the cover. In some instances, a haptic device is integrally formed with a wall or structural element of a housing or enclosure of the electronic device.Type: GrantFiled: August 13, 2018Date of Patent: July 6, 2021Assignee: Apple Inc.Inventors: Qiliang Xu, Alex J. Lehmann, Ming Yu, Xianwei Zhao, Xiaonan Wen, Shan Wu, Xiaofan Niu
-
Publication number: 20210089168Abstract: An electronic device with a force sensing device is disclosed. The electronic device comprises a user input surface defining an exterior surface of the electronic device, a first capacitive sensing element, and a second capacitive sensing element capacitively coupled to the first capacitive sensing element. The electronic device also comprises a first spacing layer between the first and second capacitive sensing elements, and a second spacing layer between the first and second capacitive sensing elements. The first and second spacing layers have different compositions. The electronic device also comprises sensing circuitry coupled to the first and second capacitive sensing elements configured to determine an amount of applied force on the user input surface. The first spacing layer is configured to collapse if the applied force is below a force threshold, and the second spacing layer is configured to collapse if the applied force is above the force threshold.Type: ApplicationFiled: December 9, 2020Publication date: March 25, 2021Inventors: Dhaval C. Patel, Eugene C. Cheung, Pey-Jiun Ko, Po-Jui Chen, Robert W. Rumford, Steve L. Terry, Wei Lin, Xiaofan Niu, Xiaoqi Zhou, Yi Gu, Yindar Chuo, Rasmi R. Das, Steven M. Scardato, Se Hyun Ahn, Victor H. Yin, Wookyung Bae, Christopher L. Boitnott, Chun-Hao Tung, Mookyung Son, Sunggu Kang, Nathan K. Gupta, John Z. Zhong
-
Patent number: 10353506Abstract: Structures and methods are disclosed for an electronic device having an input surface that uses dual sensors to measure forces applied to the input surface. The forces can be estimated over a greater range of values than would be possible with either sensor alone. A second sensor can be used after a first sensor has reached a limit. A first sensor can be a strain sensor and a second sensor a pressure sensor. Both sensors may be resistance based, with signals from both sensors can be combined and measured by processing circuitry. Each sensor type may be part of planar arrays disposed beneath the input surface.Type: GrantFiled: June 16, 2017Date of Patent: July 16, 2019Assignee: Apple Inc.Inventors: Michael Vosgueritchian, Sinan Filiz, James E. Pedder, John Stephen Smith, Saahil Mehra, Xiaofan Niu
-
Publication number: 20190073079Abstract: An electronic device includes an input device. The input device has an input/output module below or within a cover defining an input surface. The input/output module detects touch and/or force inputs on the input surface, and provides haptic feedback to the cover. In some instances, a haptic device is integrally formed with a wall or structural element of a housing or enclosure of the electronic device.Type: ApplicationFiled: August 13, 2018Publication date: March 7, 2019Inventors: Qiliang Xu, Alex J. Lehmann, Ming Yu, Xianwei Zhao, Xiaonan Wen, Shan Wu, Xiaofan Niu
-
Publication number: 20180364850Abstract: Structures and methods are disclosed for an electronic device having an input surface that uses dual sensors to measure forces applied to the input surface. The forces can be estimated over a greater range of values than would be possible with either sensor alone. A second sensor can be used after a first sensor has reached a limit. A first sensor can be a strain sensor and a second sensor a pressure sensor. Both sensors may be resistance based, with signals from both sensors can be combined and measured by processing circuitry. Each sensor type may be part of planar arrays disposed beneath the input surface.Type: ApplicationFiled: June 16, 2017Publication date: December 20, 2018Inventors: Michael Vosgueritchian, Sinan Filiz, James E. Pedder, John Stephen Smith, Saahil Mehra, Xiaofan Niu
-
Publication number: 20180081441Abstract: An electronic device is configured to provide localized haptic feedback to a user on one or more regions or sections of a surface of the electronic device. The localized haptic feedback is provided by an array of piezoelectric haptic actuators below the surface of the electronic device. Actuators within the array of piezoelectric haptic actuators are separately controllable by a control circuit layer. The control circuit layer includes control circuitry, a master flexible circuit which passes between rows of actuators, and an array of slave flexible circuits. Each slave flexible circuit is connected to the master flexible circuit and an actuator. In further examples, the array of piezoelectric haptic actuators provides a unified structure for detecting touch and force inputs.Type: ApplicationFiled: June 13, 2017Publication date: March 22, 2018Inventors: James E. Pedder, Supratik Datta, Karan Jain, Jui-Ming Yang, Pavan O. Gupta, Robert W. Rumford, Wei Lin, Xiaofan Niu, Xiaonan Wen
-
Publication number: 20170364158Abstract: In some embodiments, a haptic actuator includes piezoelectric material and a pattern of voltage electrodes coupled to a surface of the piezoelectric material. The voltage electrodes are individually controllable to supply voltage to different portions of the piezoelectric material. Different sections of the piezoelectric material are operable to deflect, producing haptic output at those locations, in response to the application of the voltage. Differing voltages may be provided to one or more of the voltage electrodes to affect the location of the deflection, and thus the haptic output. In various embodiments, a haptic output system incorporates a sealed haptic element. The sealed haptic element includes a piezoelectric component that is coupled to one or more flexes and is sealed and/or enclosed by the flex(es) and an encapsulation or sealing material.Type: ApplicationFiled: June 13, 2017Publication date: December 21, 2017Inventors: Xiaonan Wen, Wei Lin, James E. Pedder, Xiaofan Niu, Nathan K. Gupta, Po-Jui Chen, Robert W. Rumford, Pavan O. Gupta, Jui-Ming Yang
-
Publication number: 20170357325Abstract: An electronic device configured to provide localized haptic feedback to a user on one or more regions or sections of a surface of the electronic device. A support structure is positioned below the surface, and one or more haptic actuators are coupled to the support structure. In some examples, the support structure is shaped or configured to amplify a response to a haptic actuator. When a haptic actuator is actuated, the support structure deflects, which causes the surface to bend or deflect at a location that substantially corresponds to the location of the activated haptic actuator. In some examples, prior to providing haptic feedback, at least one haptic actuator is electrically pre-stressed to place the haptic actuator(s) in a pre-stressed state. When haptic feedback is to be provided, at least one haptic actuator transitions from the pre-stressed state to a haptic output state to produce one or more deflections in the surface.Type: ApplicationFiled: June 13, 2017Publication date: December 14, 2017Inventors: Jui-Ming Yang, Nathan K. Gupta, Po-Jui Chen, Teera Songatikamas, Kyle J. Campiotti, Robert L. Sheridan, Xiaonan Wen, Xiaofan Niu, James E. Pedder