Patents by Inventor Xiaohuan LIU

Xiaohuan LIU has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9732057
    Abstract: A catalyst which can catalyze ring-addition reaction of CO2 and an alkylene oxide at 0˜180° C. under 0.1˜8.0 MPa to produce a corresponding cyclic carbonate, and the preparation thereof. The catalyst is a conjugated microporous macromolecule polymer complexed with cobalt, chromium, zinc, copper or aluminium, and by using the macromolecule catalyst complexed with different metals to catalyze the reaction of CO2 and alkylene oxide at normal temperature and normal pressure, a yield of the corresponding cyclic carbonate of 35%˜90% can be obtained. The catalyst is easy to recover and the re-use of the catalyst has no influence on the yield; additionally, the yield can reach over 90% by controlling the reaction conditions.
    Type: Grant
    Filed: December 28, 2015
    Date of Patent: August 15, 2017
    Assignee: DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Weiqiao Deng, Yong Xie, Xiaohuan Liu
  • Publication number: 20160251331
    Abstract: A catalyst which can catalyze ring-addition reaction of CO2 and an alkylene oxide at 0˜180° C. under 0.1˜8.0 MPa to produce a corresponding cyclic carbonate, and the preparation thereof. The catalyst is a conjugated microporous macromolecule polymer complexed with cobalt, chromium, zinc, copper or aluminium, and by using the macromolecule catalyst complexed with different metals to catalyze the reaction of CO2 and alkylene oxide at normal temperature and normal pressure, a yield of the corresponding cyclic carbonate of 35%-90% can be obtained. The catalyst is easy to recover and the re-use of the catalyst has no influence on the yield; additionally, the yield can reach over 90% by controlling the reaction conditions.
    Type: Application
    Filed: December 28, 2015
    Publication date: September 1, 2016
    Inventors: Weiqiao DENG, Yong XIE, Xiaohuan LIU
  • Patent number: 9249120
    Abstract: Disclosed are a type of catalyst which can catalyze the ring-addition reaction of CO2 and an alkylene oxide at 0˜180° C. under 0.1˜8.0 MPa to produce a corresponding cyclic carbonate, and the preparation thereof. The catalyst is a conjugated microporous macromolecule polymer complexed with cobalt, chromium, zinc, copper or aluminum, and by using the macromolecule catalysts complexed with different metals to catalyze the reaction of CO2 and alkylene oxide at normal temperature and normal pressure, a yield of the corresponding cyclic carbonate of 35%˜90% can be obtained. The catalyst is easy to recover and the re-use of the catalyst has no influence on the yield; additionally, the yield can reach over 90% by controlling the reaction conditions.
    Type: Grant
    Filed: October 15, 2012
    Date of Patent: February 2, 2016
    Assignee: DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Weiqiao Deng, Yong Xie, Xiaohuan Liu
  • Patent number: 8985231
    Abstract: Methods and systems are provided for selectively displacing water from a hydraulically continuous water zone in a porous geological formation. The target zone to be displaced is defined by a hydrodynamically maintained pressure differential, which has been shown to be capable of confining an expanding injected gas zone. One or more gas injection wells and water production wells are located within the zone. During pressurized gas injection within the zone, the gas displaces water downward within the confined zone such that water is selectively produced from the target zone and the injected gas zone is confined within the hydraulically continuous water zone.
    Type: Grant
    Filed: February 10, 2012
    Date of Patent: March 24, 2015
    Assignee: Cenovus Energy, Inc.
    Inventors: Simon Gittins, Harbir Chhina, Katherine Stavropoulos, Xiaohuan Liu, Alvin Winestock
  • Publication number: 20140066533
    Abstract: Disclosed are a type of catalyst which can catalyse the ring-addition reaction of CO2 and an alkylene oxide at 0˜180° C. under 0.1˜8.0 MPa to produce a corresponding cyclic carbonate, and the preparation thereof. The catalyst is a conjugated microporous macromolecule polymer complexed with cobalt, chromium, zinc, copper or aluminium, and by using the macromolecule catalysts complexed with different metals to catalyse the reaction of CO2 and alkylene oxide at normal temperature and normal pressure, a yield of the corresponding cyclic carbonate of 35%˜90% can be obtained. The catalyst is easy to recover and the re-use of the catalyst has no influence on the yield; additionally, the yield can reach over 90% by controlling the reaction conditions.
    Type: Application
    Filed: October 15, 2012
    Publication date: March 6, 2014
    Applicant: DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Weiqiao Deng, Yong Xie, Xiaohuan Liu
  • Publication number: 20120205096
    Abstract: A method and system for displacing water from a porous geological formation are provided. The zone to be displaced is defined by the injection of water into one or more barrier wells around the zone. One or more gas injection wells and water production wells are located within the zone. During pressurized gas injection within the zone, the barrier wells are operated to achieve a hydraulic pressure barrier surrounding the zone that is sufficient to prevent penetration therethrough by the injected gas. The well system is operated to concurrently limit gas entry into the water production well. Accordingly, the gas displaces water downward within the zone such that water is produced at the water production wells.
    Type: Application
    Filed: May 16, 2011
    Publication date: August 16, 2012
    Applicant: CENOVUS ENERGY INC.
    Inventors: Harbir CHHINA, Simon GITTINS, Katherine STAVROPOULOS, Xiaohuan LIU, Alvin WINESTOCK
  • Publication number: 20120205127
    Abstract: Methods and systems are provided for selectively displacing water from a hydraulically continuous water zone in a porous geological formation. The target zone to be displaced is defined by a hydrodynamically maintained pressure differential, which has been shown to be capable of confining an expanding injected gas zone. One or more gas injection wells and water production wells are located within the zone. During pressurized gas injection within the zone, the gas displaces water downward within the confined zone such that water is selectively produced from the target zone and the injected gas zone is confined within the hydraulically continuous water zone.
    Type: Application
    Filed: February 10, 2012
    Publication date: August 16, 2012
    Inventors: Simon Gittins, Harbir Chhina, Katherine Stavropoulos, Xiaohuan Liu, Alvin Winestock