Patents by Inventor Xiaojiang J. Pan
Xiaojiang J. Pan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 6757316Abstract: The present invention provides an excimer laser capable of producing a high quality pulsed laser beam at pulse rates of about 4,000 Hz at pulse energies of about 5 mJ or greater. A preferred embodiment is an ArF excimer laser specifically designed as a light source for integrated circuit lithography. An improved wavemeter with special software monitors output beam parameters and controls a very fast PZT driven tuning mirror and the pulse power charging voltage to maintain wavelength and pulse energy within desired limits. In a preferred embodiment two fan motors drive a single tangential fan which provides sufficient gas flow to clear discharge debris from the discharge region during the approximately 0.25 milliseconds between pulses.Type: GrantFiled: May 11, 2001Date of Patent: June 29, 2004Assignee: Cymer, Inc.Inventors: Peter C. Newman, Thomas P. Duffey, William N. Partlo, Richard L. Sandstrom, Paul C. Melcher, David M. Johns, Robert B. Saethre, Vladimir B. Fleurov, Richard M. Ness, Curtis L. Rettig, Robert A. Shannon, Richard C. Ujazdowski, Shahryar Rokni, Xiaojiang J. Pan, Vladimir Kulgeyko, Scott T. Smith, Stuart L. Anderson, John M. Algots, Ronald L. Spangler, Igor V. Fomenkov
-
Patent number: 6567450Abstract: An injection seeded modular gas discharge laser system capable of producing high quality pulsed laser beams at pulse rates of about 4,000 Hz or greater and at pulse energies of about 5 mJ or greater. Two separate discharge chambers are provided, one of which is a part of a master oscillator producing a very narrow band seed beam which is amplified in the second discharge chamber. The chambers can be controlled separately permitting separate optimization of wavelength parameters in the master oscillator and optimization of pulse energy parameters in the amplifying chamber. A preferred embodiment in an ArF excimer laser system configured as a MOPA and specifically designed for use as a light source for integrated circuit lithography. In the preferred MOPA embodiment, each chamber comprises a single tangential fan providing sufficient gas flow to permit operation at pulse rates of 4000 Hz or greater by clearing debris from the discharge region in less time than the approximately 0.25 milliseconds between pulses.Type: GrantFiled: August 29, 2001Date of Patent: May 20, 2003Assignee: Cymer, Inc.Inventors: David W. Myers, Herve A. Besaucele, Alexander I. Ershov, William N. Partlo, Richard L. Sandstrom, Palash P. Das, Stuart L. Anderson, Igor V. Fomenkov, Richard C. Ujazdowski, Xiaojiang J. Pan, Eckehard D. Onkels, Richard M. Ness, Daniel J. W. Brown
-
Patent number: 6539042Abstract: The present invention provides an ultra pure purge system for discharge lasers. The LNP, the output coupler, the wavemeter and selected high voltage components are contained in sealed chambers each having a purge inlet port and a purge outlet port. Purge gas such as N2 is filtered and directed to each of the inlet ports. Gas exiting the outlet ports may be directed to flow monitors having alarms so that any loss of purge will be immediately detected. Purge gas may be exhausted or recirculated.Type: GrantFiled: January 29, 2001Date of Patent: March 25, 2003Assignee: Cymer, Inc.Inventors: Shahryar Rokni, Xiaojiang J. Pan, Eckehard D. Onkels
-
Patent number: 6529321Abstract: An overcoat protected diffraction grating. A replica grating having a thin aluminum reflective grating surface is produced by replication of a master grating or a submaster grating. The thin aluminum reflective surface may be cracked or have relatively thick grain boundaries containing oxides and hydroxides of aluminum and typically is also naturally coated with an aluminum oxide film. The grating is subsequently recoated in a vacuum chamber with a thin, pure, dense aluminum overcoat and then also in the vacuum the aluminum overcoat is coated with a thin film of MgF2. The grating is especially suited for use for wavelength selection in an ArF laser operating producing an ultraviolet laser beam at a wavelength of about 193 nm. The oxygen free aluminum overcoat prevents the ultraviolet light from causing damage by stimulating chemical reactions in grating materials under the aluminum grating surface or in the aluminum oxide film. The MgF2 additionally prevents oxidation on the surface, of the aluminum overcoat.Type: GrantFiled: December 7, 2000Date of Patent: March 4, 2003Assignee: Cymer, Inc.Inventors: Xiaojiang J. Pan, Richard G. Morton, Alexander I. Ershov
-
Patent number: 6511703Abstract: An overcoat protected diffraction grating. A replica grating having a thin aluminum reflective grating surface is produced by replication of a master grating or a submaster grating. The thin aluminum reflective surface may be cracked or have relatively thick grain boundaries containing oxides and hydroxides of aluminum and typically is also naturally coated with an aluminum oxide film. The grating is subsequently overcoated in a vacuum chamber with one or two thin, pure, dense aluminum overcoat layers and then also in the vacuum the aluminum overcoat layer or layers are coated with one or more thin protective layers of a material transparent to ultraviolet radiation. In preferred embodiments this protective layer is a single layer of MgF2, SiO2 or Al2O3. In other preferred embodiments the layer is a layer of MgF2 or SiO2 covered with a layer of Al2O3 and in a third preferred embodiment the protective layer is made up of four alternating layers of MgF2 and Al2O3 or four alternating layers of SiO2 and Al2O3.Type: GrantFiled: July 20, 2001Date of Patent: January 28, 2003Assignee: Cymer, Inc.Inventors: Xiaojiang J. Pan, Richard G. Morton, Alexander I. Ershov
-
Publication number: 20020150138Abstract: A gas discharge modular laser with beam train isolation between laser chamber module and front and rear optics which define the laser resonant cavity. Beam train isolation units isolates the beam train from atmospheric air while permitting quick and easy removal of the laser chamber without disturbing the optics of the resonant cavity. In preferred embodiments, metal bellows units are bolted at only side so that the chamber module can be removed and replaced without unbolting the bellows unit.Type: ApplicationFiled: April 13, 2001Publication date: October 17, 2002Inventors: Xiaojiang J. Pan, Vladimir Kulgeyko
-
Patent number: 6466601Abstract: A gas discharge modular laser with beam train isolation between laser chamber module and front and rear optics which define the laser resonant cavity. Beam train isolation units isolates the beam train from atmospheric air while permitting quick and easy removal of the laser chamber without disturbing the optics of the resonant cavity. In preferred embodiments, metal bellows units are bolted at only side so that the chamber module can be removed and replaced without unbolting the bellows unit.Type: GrantFiled: April 13, 2001Date of Patent: October 15, 2002Assignee: Cymer, Inc.Inventors: Xiaojiang J. Pan, Vladimir Kulgeyko
-
Publication number: 20020105996Abstract: The present invention provides an ultra pure purge system for discharge lasers. The LNP, the output coupler, the wavemeter and selected high voltage components are contained in sealed chambers each having a purge inlet port and a purge outlet port. Purge gas such as N2 is filtered and directed to each of the inlet ports. Gas exiting the outlet ports may be directed to flow monitors having alarms so that any loss of purge will be immediately detected. Purge gas may be exhausted or recirculated.Type: ApplicationFiled: January 29, 2001Publication date: August 8, 2002Inventors: Shahryar Rokni, Xiaojiang J. Pan, Eckehard D. Onkels
-
Publication number: 20020044586Abstract: An injection seeded modular gas discharge laser system capable of producing high quality pulsed laser beams at pulse rates of about 4,000 Hz or greater and at pulse energies of about 5 mJ or greater. Two separate discharge chambers are provided, one of which is a part of a master oscillator producing a very narrow band seed beam which is amplified in the second discharge chamber. The chambers can be controlled separately permitting separate optimization of wavelength parameters in the master oscillator and optimization of pulse energy parameters in the amplifying chamber. A preferred embodiment in an ArF excimer laser system configured as a MOPA and specifically designed for use as a light source for integrated circuit lithography. In the preferred MOPA embodiment, each chamber comprises a single tangential fan providing sufficient gas flow to permit operation at pulse rates of 4000 Hz or greater by clearing debris from the discharge region in less time than the approximately 0.25 milliseconds between pulses.Type: ApplicationFiled: August 29, 2001Publication date: April 18, 2002Inventors: David W. Myers, Herve A. Besaucele, Alexander I. Ershov, William N. Partlo, Richard L. Sandstrom, Palash P. Das, Stuart L. Anderson, Igor V. Fomenkov, Richard C. Ujazdowski, Xiaojiang J. Pan, Eckehard D. Onkels, Richard M. Ness, Daniel J.W. Brown
-
Publication number: 20020021728Abstract: The present invention provides an excimer laser capable of producing a high quality pulsed laser beam at pulse rates of about 4,000 Hz at pulse energies of about 5 mJ or greater. A preferred embodiment is an ArF excimer laser specifically designed as a light source for integrated circuit lithography. An improved wavemeter with special software monitors output beam parameters and controls a very fast PZT driven tuning mirror and the pulse power charging voltage to maintain wavelength and pulse energy within desired limits. In a preferred embodiment two fan motors drive a single tangential fan which provides sufficient gas flow to clear discharge debris from the discharge region during the approximately 0.25 milliseconds between pulses.Type: ApplicationFiled: May 11, 2001Publication date: February 21, 2002Inventors: Peter C. Newman, Thomas P. Duffey, William N. Partlo, Richard L. Sandstrom, Paul C. Melcher, David M. Johns, Robert B. Saethre, Vladimir B. Fleurov, Richard M. Ness, Curtis L. Rettig, Robert A. Shannon, Richard C. Ujazdowski, Shahryar Rokni, Xiaojiang J. Pan, Vladimir Kulgeyko, Scott T. Smith, Stuart L. Anderson, John M. Algots, Ronald L. Spangler, Igor V. Fomenkov
-
Publication number: 20020001672Abstract: An overcoat protected diffraction grating. A replica grating having a thin aluminum reflective grating surface is produced by replication of a master grating or a submaster grating. The thin aluminum reflective surface may be cracked or have relatively thick grain boundaries containing oxides and hydroxides of aluminum and typically is also naturally coated with an aluminum oxide film. The grating is subsequently overcoated in a vacuum chamber with one or two thin, pure, dense aluminum overcoat layers and then also in the vacuum the aluminum overcoat layer or layers are coated with one or more thin protective layers of a material transparent to ultraviolet radiation. In preferred embodiments this protective layer is a single layer of MgF2, S1O2 or Al2O3.Type: ApplicationFiled: July 20, 2001Publication date: January 3, 2002Inventors: Xiaojiang J. Pan, Richard G. Morton, Alexander I. Ershov
-
Publication number: 20010003016Abstract: An overcoat protected diffraction grating. A replica grating having a thin aluminum reflective grating surface is produced by replication of a master grating or a submaster grating. The thin aluminum reflective surface may be cracked or have relatively thick grain boundaries containing oxides and hydroxides of aluminum and typically is also naturally coated with an aluminum oxide film. The grating is subsequently recoated in a vacuum chamber with a thin, pure, dense aluminum overcoat and then also in the vacuum the aluminum overcoat is coated with a thin film of MgF2. The grating is especially suited for use for wavelength selection in an ArF laser operating producing an ultraviolet laser beam at a wavelength of about 193 nm. The oxygen free aluminum overcoat prevents the ultraviolet light from causing damage by stimulating chemical reactions in grating materials under the aluminum grating surface or in the aluminum oxide film. The MgF2 additionally prevents oxidation on the surface of the aluminum overcoat.Type: ApplicationFiled: December 7, 2000Publication date: June 7, 2001Inventors: Xiaojiang J. Pan, Richard G. Morton, Alexander I. Ershov
-
Patent number: 6109574Abstract: A chamber/optics support structure for a laser having a laser chamber with a vibration source. The chamber and the laser resonance cavity optical elements are supported on a platform. The chamber is supported by a plurality of wheels which in turn rests on two tracks on track supports mounted on the platform. A flexible clamp flexibly clamps the chamber in a horizontal position to align it with the resonance cavity optical elements and to substantially decouple vibration between the chamber vibration source to the optical elements in a frequency range of concern.The invention is especially useful for positioning the heavy laser chamber of a narrow band excimer laser and for decoupling vibrations resulting from its blower from the lasers line narrowing module and output coupler. In a preferred embodiment the plurality of wheels is three wheels, two of which rest in a V-groove track and one of which rests on a flat track.Type: GrantFiled: October 16, 1998Date of Patent: August 29, 2000Assignee: Cymer, Inc.Inventors: Xiaojiang J. Pan, James K. Howey, Curtiss L. Mixon