Patents by Inventor Xiaojie Cheng

Xiaojie Cheng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11959128
    Abstract: The present invention relates to the field of noninvasive prenatal gene testing by high-through sequencing technologies. Particularly, the present application relates to a method for determining the content of cell-free fetal DNA in maternal peripheral blood.
    Type: Grant
    Filed: March 15, 2017
    Date of Patent: April 16, 2024
    Assignee: BERRY GENOMICS CO., LTD.
    Inventors: Xiaojie Zhang, Tao Cheng, Xiangbin Chen, Jianguang Zhang
  • Patent number: 11639474
    Abstract: A catalytic cracking process includes a step of contacting a cracking feedstock with a catalytic cracking catalyst in the presence of a radical initiator for reaction under catalytic cracking conditions. The radical initiator contains a dendritic polymer and/or a hyperbranched polymer. The dendritic polymer and the hyperbranched polymer each independently has a degree of branching of about 0.3-1, and each independently has a weight average molecular weight of greater than about 1000. The catalytic cracking process is beneficial to enhancing and accelerating the free radical cracking of petroleum hydrocarbon and promoting the regulation of cracking activity and product distribution; by using the process disclosed herein, the conversion of catalytic cracking can be improved, the yields of ethylene and propylene can be increased, and the yield of coke can be reduced.
    Type: Grant
    Filed: October 25, 2019
    Date of Patent: May 2, 2023
    Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, RESEARCH INSTITUTE OF PETROLEUM PROCESSING, SINOPEC
    Inventors: Yibin Luo, Ying Ouyang, Enhui Xing, Xingtian Shu, Xiaojie Cheng, Genquan Zhu
  • Publication number: 20210395616
    Abstract: A catalytic cracking process includes a step of contacting a cracking feedstock with a catalytic cracking catalyst in the presence of a radical initiator for reaction under catalytic cracking conditions. The radical initiator contains a dendritic polymer and/or a hyperbranched polymer. The dendritic polymer and the hyperbranched polymer each independently has a degree of branching of about 0.3-1, and each independently has a weight average molecular weight of greater than about 1000. The catalytic cracking process is beneficial to enhancing and accelerating the free radical cracking of petroleum hydrocarbon and promoting the regulation of cracking activity and product distribution; by using the process disclosed herein, the conversion of catalytic cracking can be improved, the yields of ethylene and propylene can be increased, and the yield of coke can be reduced.
    Type: Application
    Filed: October 25, 2019
    Publication date: December 23, 2021
    Inventors: Yibin LUO, Ying OUYANG, Enhui XING, Xingtian SHU, Xiaojie CHENG, Genquan ZHU
  • Patent number: 8202971
    Abstract: A process for preparing compounds of chitosan saccharified with aminosugar, adopts chitosan derivatives, aminosugar derivatives and anhydride derivatives as raw materials to synthesize target products. The process comprises: covalently bonding an anhydride derivative as a bonding arm to an aminosugar derivative, so as to form a monosaccharide derivative having an end group of carboxyl; and then covalently bonding the monosaccharide derivative having an end group of carboxyl to a primary amino group of a chitosan derivative via the carboxyl, so as to form a compound of chitosan saccharified with aminosugar.
    Type: Grant
    Filed: July 8, 2009
    Date of Patent: June 19, 2012
    Assignee: Ocean University of China
    Inventors: Xiguang Chen, Jing Li, Xiaojie Cheng, Tao Jiang
  • Publication number: 20100152430
    Abstract: A process for preparing compounds of chitosan saccharified with aminosugar, adopts chitosan derivatives, aminosugar derivatives and anhydride derivatives as raw materials to synthesize target products. The process comprises: covalently bonding an anhydride derivative as a bonding arm to an aminosugar derivative, so as to form a monosaccharide derivative having an end group of carboxyl; and then covalently bonding the monosaccharide derivative having an end group of carboxyl to a primary amino group of a chitosan derivative via the carboxyl, so as to form a compound of chitosan saccharified with aminosugar.
    Type: Application
    Filed: July 8, 2009
    Publication date: June 17, 2010
    Inventors: Xiguang Chen, Jing Li, Xiaojie Cheng, Tao Jiang