Patents by Inventor Xiaojuan XU

Xiaojuan XU has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11680075
    Abstract: The present invention relates to an application of 4-MePhNHLi, in particular, to an application of 4-MePhNHLi in catalyzing hydroboration reaction of imine and borane. A catalyst, borane, and imine are stirred and mixed uniformly in sequence for reaction for 1-2 hours, the reaction is terminated by exposure to air, and the solvent in the reaction liquid is removed under reduced pressure to obtain borate esters having different substituents. According to the present invention, 4-MePhNHLi can catalyze hydroboration reaction of imine and borane at high activity at room temperature, the amount of catalyst is only 4-5 mol % of the molar mass of imine, and the reaction can reach a yield of more than 90%; compared with an existing catalytic system, simple 4-MePhNHLi is used, the reaction conditions are mild, and the yield of borate esters having different substituents can reach 99% in optimized conditions.
    Type: Grant
    Filed: April 8, 2021
    Date of Patent: June 20, 2023
    Assignee: SOOCHOW UNIVERSITY
    Inventors: Mingqiang Xue, Xiaojuan Xu, Dandan Yan
  • Publication number: 20230138643
    Abstract: Provided herein is a nucleic acid extraction and the structure of a reaction chamber is improved such that a piston, a reaction chamber and a magnetic rod are independent of one another, magnetic beads are more concentrated, more sufficient adsorption, washing and elution are achieved, dead corners are eliminated, when the nucleic acid extraction and amplification device is used to perform nucleic acid extraction and amplification. The sensitivity and accuracy of nucleic acid detection can be further improved, and missing and wrong detection can be avoided.
    Type: Application
    Filed: November 3, 2022
    Publication date: May 4, 2023
    Inventors: Lianyi XIE, Ming LI, Peng WANG, Ning CHEN, Guojun TONG, Jin HU, Zhuo TAN, Wenyu REN, Xiaojuan XU
  • Publication number: 20230135264
    Abstract: Provided herein is a nucleic acid extraction and the structure of a reaction chamber is improved such that a piston, a reaction chamber and a magnetic rod are independent of one another, magnetic beads are more concentrated, more sufficient adsorption, washing and elution are achieved, dead corners are eliminated, when the nucleic acid extraction and amplification device is used to perform nucleic acid extraction and amplification. The sensitivity and accuracy of nucleic acid detection can be further improved, and missing and wrong detection can be avoided.
    Type: Application
    Filed: November 3, 2022
    Publication date: May 4, 2023
    Inventors: Lianyi XIE, Ming LI, Peng WANG, Ning CHEN, Guojun TONG, Jin HU, Zhuo TAN, Wenyu REN, Xiaojuan XU
  • Publication number: 20220024950
    Abstract: A method for preparing the borate ester using a lithium compound includes: under the inert gas, stirring and mixing carboxylic acid and borane, and a catalyst lithium compound is added, then the borate ester is obtained with hydroboration; wherein the hydroboration is at room temperature for 10 to 80 min. After the hydroboration and is stopped by contacting air, the solvent is removed under reduced pressure, to obtain the borate esters with different substituents. The lithium compounds are n-butyl lithium, lithium aniline, p-methyl lithium aniline, o-methyl lithium aniline, 2-methoxyaniline lithium, 4-methoxyaniline lithium, 2,6-dimethylaniline lithium, and 2,6-diisopropylaniline lithium. The lithium compounds disclosed in the present invention can catalyze the boron hydrogenation reaction of carboxylic acid and borane with high activity under room temperature conditions; the amount of lithium compound is 0.1-0.9% of the molar amount of carboxylic acid.
    Type: Application
    Filed: March 7, 2019
    Publication date: January 27, 2022
    Inventors: Mingqiang XUE, Xiaojuan XU, Dandan YAN
  • Publication number: 20220017543
    Abstract: Disclosed is a method for preparing a boric acid ester using non-catalyzed hydroboration of a carboxylic acid. The method includes: in an inert gas atmosphere, mixing pinacolborane and a carboxylic acid and stirring until uniform in a reaction flask subjected to dehydration and deoxygenation treatments, reacting for 6-12 hours to obtain the boric acid ester, then adding silica gel and methanol, and conducting a hydrolysis reaction to prepare an alcohol compound. The carboxylic acid is acetic acid, caproic acid, pentanoic acid, heptanoic acid, trimethylacetic acid, adipic acid, benzoic acid, 4-bromobenzoic acid, 4-fluorobenzoic acid, 1-naphthoic acid, 2-methoxybenzoic acid, 4-tert-butylbenzoic acid, 4-ethoxybenzoic acid, 2-bromobenzoic acid, 4-iodobenzoic acid, 3-phenylpropionic acid, diphenyl acetic acid, 2-phenylbutyric acid, indole-3-acetic acid, o-carboxyl phenylacetic acid or 2-methyl-5-bromobenzoic acid.
    Type: Application
    Filed: March 7, 2019
    Publication date: January 20, 2022
    Inventors: Mingqiang XUE, Xiaojuan XU, Dandan YAN
  • Publication number: 20210221829
    Abstract: The present invention relates to an application of 4-MePhNHLi, in particular, to an application of 4-MePhNHLi in catalyzing hydroboration reaction of imine and borane. A catalyst, borane, and imine are stirred and mixed uniformly in sequence for reaction for 1-2 hours, the reaction is terminated by exposure to air, and the solvent in the reaction liquid is removed under reduced pressure to obtain borate esters having different substituents. According to the present invention, 4-MePhNHLi can catalyze hydroboration reaction of imine and borane at high activity at room temperature, the amount of catalyst is only 4-5 mol % of the molar mass of imine, and the reaction can reach a yield of more than 90%; compared with an existing catalytic system, simple 4-MePhNHLi is used, the reaction conditions are mild, and the yield of borate esters having different substituents can reach 99% in optimized conditions.
    Type: Application
    Filed: April 8, 2021
    Publication date: July 22, 2021
    Inventors: Mingqiang XUE, Xiaojuan XU, Dandan YAN