Patents by Inventor Xiaomei Jane Jiang

Xiaomei Jane Jiang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10008669
    Abstract: The fabrication and characterization of large scale inverted organic solar array fabricated using all-spray process is disclosed, consisting of four layers; ITO-Cs2CO3-(P3HT:PCBM)-modified PEDPT:PSS, on a substrate. With PEDPT:PSS as the anode, the encapsulated solar array shows more than 30% transmission in the visible to near IR range. Optimization by thermal annealing was performed based on single-cell or multiple-cell arrays. Solar illumination has been demonstrated to improve solar array efficiency up to 250% with device efficiency of 1.80% under AM1.5 irradiance. The performance enhancement under illumination occurs only with sprayed devices, indicating device enhancement under sunlight, which is beneficial for solar energy applications.
    Type: Grant
    Filed: August 3, 2015
    Date of Patent: June 26, 2018
    Assignee: University of South Florida
    Inventors: Xiaomei Jane Jiang, Jason Erik Lewis
  • Patent number: 9831429
    Abstract: The fabrication and characterization of large scale inverted organic solar array fabricated using all-spray process is disclosed. Solar illumination has been demonstrated to improve transparent solar photovoltaic devices. The technology using SAM has potential to revolute current silicon-based photovoltaic technology by providing a complete solution processable manufacturing process. The semi-transparent property of the solar module allows for applications on windows and windshields. The inventive modules are more efficient than silicon solar cells in artificial light environments. This significantly expands their use in indoor applications. Additionally, these modules can be integrated into soft fabric substances such as tents, military back-packs or combat uniforms, providing a highly portable renewable power supply for deployed military forces.
    Type: Grant
    Filed: June 22, 2016
    Date of Patent: November 28, 2017
    Assignee: University of South Florida
    Inventors: Xiaomei Jane Jiang, Jason Erik Lewis
  • Patent number: 9515209
    Abstract: Manipulation of the passivation ligands of colloidal quantum dots and use in QD electronics. A multi-step electrostatic process is described which creates bare QDs, followed by the formation of QD superlattice via electric and thermal stimulus. Colloidal QDs with original long ligands (i.e. oleic acid) are atomized, and loaded into a special designed tank to be washed, followed by another atomization step before entering the doping station. The final step is the deposition of bare QDs onto substrate and growth of QD superlattice. The method permits the formation of various photonic devices, such as single junction and tandem solar cells based on bare QD superlattice, photodetectors, and LEDs. The devices include a piezoelectric substrate with an electrode, and at least one layer of bare quantum dots comprising group IV-VI elements on the electrode, where the bare quantum dots have been stripped of outer-layer ligands.
    Type: Grant
    Filed: March 11, 2016
    Date of Patent: December 6, 2016
    Assignee: University of South Florida
    Inventors: Jason Erik Lewis, Xiaomei Jane Jiang
  • Publication number: 20160322566
    Abstract: The fabrication and characterization of large scale inverted organic solar array fabricated using all-spray process is disclosed. Solar illumination has been demonstrated to improve transparent solar photovoltaic devices. The technology using SAM has potential to revolute current silicon-based photovoltaic technology by providing a complete solution processable manufacturing process. The semi-transparent property of the solar module allows for applications on windows and windshields. The inventive modules are more efficient than silicon solar cells in artificial light environments. This significantly expands their use in indoor applications. Additionally, these modules can be integrated into soft fabric substances such as tents, military back-packs or combat uniforms, providing a highly portable renewable power supply for deployed military forces.
    Type: Application
    Filed: June 22, 2016
    Publication date: November 3, 2016
    Applicant: University of South Florida
    Inventors: Xiaomei Jane Jiang, Jason Erik Lewis
  • Patent number: 9401437
    Abstract: The fabrication and characterization of large scale inverted organic solar array fabricated using all-spray process is disclosed. Solar illumination has been demonstrated to improve transparent solar photovoltaic devices. The technology using SAM has potential to revolute current silicon-based photovoltaic technology by providing a complete solution processable manufacturing process. The semi-transparent property of the solar module allows for applications on windows and windshields. The inventive modules are more efficient than silicon solar cells in artificial light environments. This significantly expands their use in indoor applications. Additionally, these modules can be integrated into soft fabric substances such as tents, military back-packs or combat uniforms, providing a highly portable renewable power supply for deployed military forces.
    Type: Grant
    Filed: May 31, 2013
    Date of Patent: July 26, 2016
    Assignee: University of South Florida
    Inventors: Xiaomei Jane Jiang, Jason Erik Lewis
  • Publication number: 20160197213
    Abstract: Manipulation of the passivation ligands of colloidal quantum dots and use in QD electronics. A multi-step electrostatic process is described which creates bare QDs, followed by the formation of QD superlattice via electric and thermal stimulus. Colloidal QDs with original long ligands (i.e. oleic acid) are atomized, and loaded into a special designed tank to be washed, followed by another atomization step before entering the doping station. The final step is the deposition of bare QDs onto substrate and growth of QD superlattice. The method permits the formation of various photonic devices, such as single junction and tandem solar cells based on bare QD superlattice, photodetectors, and LEDs. The devices include a piezoelectric substrate with an electrode, and at least one layer of bare quantum dots comprising group IV-VI elements on the electrode, where the bare quantum dots have been stripped of outer-layer ligands.
    Type: Application
    Filed: March 11, 2016
    Publication date: July 7, 2016
    Applicant: University of South Florida
    Inventors: Jason Erik Lewis, Xiaomei Jane Jiang
  • Publication number: 20150357569
    Abstract: The fabrication and characterization of large scale inverted organic solar array fabricated using all-spray process is disclosed, consisting of four layers; ITO-Cs2CO3-(P3HT:PCBM)-modified PEDPT:PSS, on a substrate. With PEDPT:PSS as the anode, the encapsulated solar array shows more than 30% transmission in the visible to near IR range. Optimization by thermal annealing was performed based on single-cell or multiple-cell arrays. Solar illumination has been demonstrated to improve solar array efficiency up to 250% with device efficiency of 1.80% under AM1.5 irradiance. The performance enhancement under illumination occurs only with sprayed devices, indicating device enhancement under sunlight, which is beneficial for solar energy applications.
    Type: Application
    Filed: August 3, 2015
    Publication date: December 10, 2015
    Applicant: UNIVERSITY OF SOUTH FLORIDA
    Inventors: Xiaomei Jane Jiang, Jason Erik Lewis
  • Patent number: 9099605
    Abstract: The fabrication and characterization of large scale inverted organic solar array fabricated using all-spray process is disclosed, consisting of four layers; ITO-Cs2CO3-(P3HT:PCBM)-modified PEDPT:PSS, on a substrate. With PEDPT:PSS as the anode, the encapsulated solar array shows more than 30% transmission in the visible to near IR range. Optimization by thermal annealing was performed based on single-cell or multiple-cell arrays. Solar illumination has been demonstrated to improve solar array efficiency up to 250% with device efficiency of 1.80% under AM1.5 irradiance. The performance enhancement under illumination occurs only with sprayed devices, indicating device enhancement under sunlight, which is beneficial for solar energy applications.
    Type: Grant
    Filed: May 31, 2013
    Date of Patent: August 4, 2015
    Assignee: University of South Florida
    Inventors: Xiaomei Jane Jiang, Jason Erik Lewis
  • Publication number: 20130284242
    Abstract: The fabrication and characterization of large scale inverted organic solar array fabricated using all-spray process is disclosed. Solar illumination has been demonstrated to improve transparent solar photovoltaic devices. The technology using SAM has potential to revolute current silicon-based photovoltaic technology by providing a complete solution processable manufacturing process. The semi-transparent property of the solar module allows for applications on windows and windshields. The inventive modules are more efficient than silicon solar cells in artificial light environments. This significantly expands their use in indoor applications. Additionally, these modules can be integrated into soft fabric substances such as tents, military back-packs or combat uniforms, providing a highly portable renewable power supply for deployed military forces.
    Type: Application
    Filed: May 31, 2013
    Publication date: October 31, 2013
    Applicant: UNIVERSITY OF SOUTH FLORIDA
    Inventors: Xiaomei Jane Jiang, Jason Erik Lewis
  • Publication number: 20130263916
    Abstract: An inverted organic solar photovoltaic cell is described that may be fabricated onto rigid or flexible substrates using spray-on technology to apply the various layers of the cell. Indium tin oxide with a thin layer of cesium carbonate functions as the cathode for the novel inverted cells. An active layer of poly-3(hexylthiophene) and [6,6]-phenyl C61-butyric acid methylester having a thickness around 200 nm to 600 nm facilitates a high level of light transmittal through the cell. A modified PEDOT:PSS, made by doping a conductive polymer with dimethylsulfoxide (DMSO), functions as the anode. A method of forming the inverted organic solar photovoltaic cell is also described using gas-propelled spraying to achieve thin layers. After the layers are formed, the cell is sealed using a vacuum and temperature-based annealing and encapsulation with UV-cure epoxy.
    Type: Application
    Filed: April 1, 2013
    Publication date: October 10, 2013
    Applicant: UNIVERSITY OF SOUTH FLORIDA
    Inventors: Jason Eric Lewis, Xiaomei Jane Jiang
  • Publication number: 20130255757
    Abstract: The fabrication and characterization of large scale inverted organic solar array fabricated using all-spray process is disclosed, consisting of four layers; ITO-Cs2CO3-(P3HT:PCBM)-modified PEDPT:PSS, on a substrate. With PEDPT:PSS as the anode, the encapsulated solar array shows more than 30% transmission in the visible to near IR range. Optimization by thermal annealing was performed based on single-cell or multiple-cell arrays. Solar illumination has been demonstrated to improve solar array efficiency up to 250% with device efficiency of 1.80% under AM1.5 irradiance. The performance enhancement under illumination occurs only with sprayed devices, indicating device enhancement under sunlight, which is beneficial for solar energy applications.
    Type: Application
    Filed: May 31, 2013
    Publication date: October 3, 2013
    Applicant: UNIVERSITY OF SOUTH FLORIDA
    Inventors: Xiaomei Jane Jiang, Jason Erik Lewis