Patents by Inventor Xiaomin Chris Cheng

Xiaomin Chris Cheng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10259101
    Abstract: Polycrystalline compacts include an interface between first and second volumes of a body of inter-bonded grains of hard material. The first volume is at least substantially free of interstitial material, and the second volume includes interstitial material in interstitial spaces between surfaces of the inter-bonded grains of hard material. The interface between the first and second volumes is configured, located and oriented such that cracks originating in the compact during use of the compacts and propagating along the interface generally toward a central axis of the compacts will propagate generally toward a back surface and away from a front cutting face of the compacts at an acute angle or angles. Methods of forming polycrystalline compacts involve the formation of such an interface within the compacts.
    Type: Grant
    Filed: December 21, 2016
    Date of Patent: April 16, 2019
    Assignee: Baker Hughes Incorporated
    Inventor: Xiaomin Chris Cheng
  • Patent number: 9963940
    Abstract: A method of forming an earth-boring tool includes introducing metal into a die, rotating the die to generate centrifugal forces on the metal, and cooling the metal in the rotating die. A rotary drill bit may include a unitary, centrifugally cast bit body including an integral shank, at least one blade, and at least one cutting element on the blade. A rotary drill bit or a roller cone may include a first centrifugally cast material and a second centrifugally cast material. Another rotary drill bit includes a bit body comprising a maraging steel alloy. A method of forming a rotary drill bit may include disposing cutting elements on a rotary drill bit comprising maraging steel and aging the rotary drill bit to form at least one intermetallic precipitate phase. Methods of repairing a rotary drill bit include annealing and aging at least a portion of a rotary drill bit.
    Type: Grant
    Filed: March 31, 2015
    Date of Patent: May 8, 2018
    Assignee: Baker Hughes Incorporated
    Inventors: Xiaomin Chris Cheng, Eric C. Sullivan, Tu Tien Trinh
  • Publication number: 20170100819
    Abstract: Polycrystalline compacts include an interface between first and second volumes of a body of inter-bonded grains of hard material. The first volume is at least substantially free of interstitial material, and the second volume includes interstitial material in interstitial spaces between surfaces of the inter-bonded grains of hard material. The interface between the first and second volumes is configured, located and oriented such that cracks originating in the compact during use of the compacts and propagating along the interface generally toward a central axis of the compacts will propagate generally toward a back surface and away from a front cutting face of the compacts at an acute angle or angles. Methods of forming polycrystalline compacts involve the formation of such an interface within the compacts.
    Type: Application
    Filed: December 21, 2016
    Publication date: April 13, 2017
    Inventor: Xiaomin Chris Cheng
  • Patent number: 9534450
    Abstract: Polycrystalline compacts include an interface between first and second volumes of a body of inter-bonded grains of hard material. The first volume is at least substantially free of interstitial material, and the second volume includes interstitial material in interstitial spaces between surfaces of the inter-bonded grains of hard material. The interface between the first and second volumes is configured, located and oriented such that cracks originating in the compact during use of the compacts and propagating along the interface generally toward a central axis of the compacts will propagate generally toward a back surface and away from a front cutting face of the compacts at an acute angle or angles. Methods of forming polycrystalline compacts involve the formation of such an interface within the compacts.
    Type: Grant
    Filed: July 22, 2013
    Date of Patent: January 3, 2017
    Assignee: Baker Hughes Incorporated
    Inventor: Xiaomin Chris Cheng
  • Patent number: 9145741
    Abstract: A cutting element for an earth-boring tool includes an elongated body having a longitudinal axis, a generally planar volume of hard material attached to the elongated body, and a sensor affixed to the elongated body. The sensor may be configured to sense at least one of stress and strain. An earth-boring tool includes a cutting element disposed at least partially within a pocket of a body. Methods of forming cutting elements comprise securing a generally planar volume of hard material to an elongated body, attaching a sensor to the elongated body, and configuring the sensor. Methods of forming earth-boring tools comprise forming a cutting element and securing the cutting element within a recess in a body of the earth-boring tool. Methods of forming wellbores comprise rotating an earth-boring tool comprising a cutting element and measuring at least one of stress and strain.
    Type: Grant
    Filed: June 13, 2011
    Date of Patent: September 29, 2015
    Assignee: Baker Hughes Incorporated
    Inventors: Tu Tien Trinh, Eric C. Sullivan, Xiaomin Chris Cheng
  • Publication number: 20150204142
    Abstract: A method of forming an earth-boring tool includes introducing metal into a die, rotating the die to generate centrifugal forces on the metal, and cooling the metal in the rotating die. A rotary drill bit may include a unitary, centrifugally cast bit body including an integral shank, at least one blade, and at least one cutting element on the blade. A rotary drill bit or a roller cone may include a first centrifugally cast material and a second centrifugally cast material. Another rotary drill bit includes a bit body comprising a maraging steel alloy. A method of forming a rotary drill bit may include disposing cutting elements on a rotary drill bit comprising maraging steel and aging the rotary drill bit to form at least one intermetallic precipitate phase. Methods of repairing a rotary drill bit include annealing and aging at least a portion of a rotary drill bit.
    Type: Application
    Filed: March 31, 2015
    Publication date: July 23, 2015
    Inventors: Xiaomin Chris Cheng, Eric C. Sullivan, Tu Tien Trinh
  • Patent number: 8991471
    Abstract: A method of forming an earth-boring tool includes introducing metal into a die, rotating the die to generate centrifugal forces on the metal, and cooling the metal in the rotating die. A rotary drill bit may include a unitary, centrifugally cast bit body including an integral shank, at least one blade, and at least one cutting element on the blade. A rotary drill bit or a roller cone may include a first centrifugally cast material and a second centrifugally cast material. Another rotary drill bit includes a bit body comprising a maraging steel alloy. A method of forming a rotary drill bit may include disposing cutting elements on a rotary drill bit comprising maraging steel and aging the rotary drill bit to form at least one intermetallic precipitate phase. Methods of repairing a rotary drill bit include annealing and aging at least a portion of a rotary drill bit.
    Type: Grant
    Filed: December 8, 2011
    Date of Patent: March 31, 2015
    Assignee: Baker Hughes Incorporated
    Inventors: Xiaomin Chris Cheng, Eric C. Sullivan, Tu Tien Trinh
  • Publication number: 20150021100
    Abstract: Polycrystalline compacts include an interface between first and second volumes of a body of inter-bonded grains of hard material. The first volume is at least substantially free of interstitial material, and the second volume includes interstitial material in interstitial spaces between surfaces of the inter-bonded grains of hard material. The interface between the first and second volumes is configured, located and oriented such that cracks originating in the compact during use of the compacts and propagating along the interface generally toward a central axis of the compacts will propagate generally toward a back surface and away from a front cutting face of the compacts at an acute angle or angles. Methods of forming polycrystalline compacts involve the formation of such an interface within the compacts.
    Type: Application
    Filed: July 22, 2013
    Publication date: January 22, 2015
    Inventor: Xiaomin Chris Cheng
  • Patent number: 8777088
    Abstract: Methods of attaching cutting elements to earth-boring tools, comprising abutting a portion of a cutting element against at least one surface of an earth-boring tool with a braze material disposed therebetween; and brazing the cutting element to the earth-boring tool by applying high-frequency vibrations to cause the braze material to become flowable. Methods of securing cutting elements to earth-boring tools may comprise at least partially coating a cutting element with a braze material. The cutting element may be at least partially disposed in a pocket formed in a body of an earth-boring tool with the braze material adjacent surfaces defining the pocket. The cutting element and the braze material may be ultrasonically torsionally oscillated to braze the cutting element within the pocket.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: July 15, 2014
    Assignee: Baker Hughes Incorporated
    Inventors: Tu Tien Trinh, Eric C. Sullivan, Xiaomin Chris Cheng
  • Publication number: 20130146366
    Abstract: A method of forming an earth-boring tool includes introducing metal into a die, rotating the die to generate centrifugal forces on the metal, and cooling the metal in the rotating die. A rotary drill bit may include a unitary, centrifugally cast bit body including an integral shank, at least one blade, and at least one cutting element on the blade. A rotary drill bit or a roller cone may include a first centrifugally cast material and a second centrifugally cast material. Another rotary drill bit includes a bit body comprising a maraging steel alloy. A method of forming a rotary drill bit may include disposing cutting elements on a rotary drill bit comprising maraging steel and aging the rotary drill bit to form at least one intermetallic precipitate phase. Methods of repairing a rotary drill bit include annealing and aging at least a portion of a rotary drill bit.
    Type: Application
    Filed: December 8, 2011
    Publication date: June 13, 2013
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Xiaomin Chris Cheng, Eric C. Sullivan, Tu Tien Trinh
  • Publication number: 20130098972
    Abstract: Methods of attaching cutting elements to earth-boring tools, comprising abutting a portion a cutting element against at least one surface of an earth-boring tool with a braze material disposed therebetween; and brazing the cutting element to the earth-boring tool by applying high-frequency vibrations to cause the braze material to become flowable. Methods of securing cutting elements to earth-boring tools may comprise at least partially coating a cutting element with a braze material. The cutting element may be at least partially disposed in a pocket formed in a body of an earth-boring tool with the braze material adjacent surfaces defining the pocket. The cutting element and the braze material may be ultrasonically torsionally oscillated to braze the cutting element within the pocket.
    Type: Application
    Filed: September 14, 2012
    Publication date: April 25, 2013
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Tu Tien Trinh, Eric C. Sullivan, Xiaomin Chris Cheng
  • Publication number: 20120312599
    Abstract: A cutting element for an earth-boring tool includes an elongated body having a longitudinal axis, a generally planar volume of hard material attached to the elongated body, and a sensor affixed to the elongated body. The sensor may be configured to sense at least one of stress and strain. An earth-boring tool includes a cutting element disposed at least partially within a pocket of a body. Methods of forming cutting elements comprise securing a generally planar volume of hard material to an elongated body, attaching a sensor to the elongated body, and configuring the sensor. Methods of forming earth-boring tools comprise forming a cutting element and securing the cutting element within a recess in a body of the earth-boring tool. Methods of forming wellbores comprise rotating an earth-boring tool comprising a cutting element and measuring at least one of stress and strain.
    Type: Application
    Filed: June 13, 2011
    Publication date: December 13, 2012
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Tu Tien Trinh, Eric C. Sullivan, Xiaomin Chris Cheng