Patents by Inventor Xiaomin Niu

Xiaomin Niu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10517967
    Abstract: An aqueous approach to synthesize capped SnS quantum dots (QDs) followed by optional capping molecule extension by attaching one or more extending molecules to the capping molecule via peptide bond formation at elevated temperature. The capped SnS QDs may have a capping molecule:Sn:S molar ratio of 16:3:1 to 16:12:1. A suspension of SnS QDs was heat-treated at 200° C. for 0.5-4 hrs. The obtained SnS QDs showed an NIR emission peak at 820-835 nm with an excitation wavelength at 690 nm. The as synthesized SnS QDs were found to have high positive zeta potential of ˜30 mV and thus were toxic to cells. By neutralizing the SnS QDs the cytotoxicity was reduced to an accepted level. The heat-treatment step can be obviated by adding a glycerol solution containing S2? anions and capping molecule to a glycerol solution of Sn2+ ions.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: December 31, 2019
    Assignee: Drexel University
    Inventors: Wei-Heng Shih, Wan Y. Shih, Song Han, Xiaomin Niu, Shi Fang
  • Publication number: 20180117187
    Abstract: An aqueous approach to synthesize capped SnS quantum dots (QDs) followed by optional capping molecule extension by attaching one or more extending molecules to the capping molecule via peptide bond formation at elevated temperature. The capped SnS QDs may have a capping molecule:Sn:S molar ratio of 16:3:1 to 16:12:1. A suspension of SnS QDs was heat-treated at 200° C. for 0.5-4 hrs. The obtained SnS QDs showed an NIR emission peak at 820-835 nm with an excitation wavelength at 690 nm. The as synthesized SnS QDs were found to have high positive zeta potential of ˜30 mV and thus were toxic to cells. By neutralizing the SnS QDs the cytotoxicity was reduced to an accepted level. The heat-treatment step can be obviated by adding a glycerol solution containing S2? anions and capping molecule to a glycerol solution of Sn2+ ions.
    Type: Application
    Filed: December 22, 2017
    Publication date: May 3, 2018
    Applicant: Drexel University
    Inventors: Wei-Heng Shih, Wan Y. Shih, Song Han, Xiaomin Niu, Shi Fang
  • Patent number: 9878059
    Abstract: An aqueous approach to synthesize capped SnS quantum dots (QDs) followed by optional capping molecule extension by attaching one or more extending molecules to the capping molecule via peptide bond formation at elevated temperature. The capped SnS QDs may have a capping molecule:Sn:S molar ratio of 16:3:1 to 16:12:1. A suspension of SnS QDs was heat-treated at 200° C. for 0.5-4 hrs. The obtained SnS QDs showed an NIR emission peak at 820-835 nm with an excitation wavelength at 690 nm. The as synthesized SnS QDs were found to have high positive zeta potential of ˜30 mV and thus were toxic to cells. By neutralizing the SnS QDs the cytotoxicity was reduced to an accepted level. The heat-treatment step can be obviated by adding a glycerol solution containing S2? anions and capping molecule to a glycerol solution of Sn2+ ions.
    Type: Grant
    Filed: April 7, 2016
    Date of Patent: January 30, 2018
    Assignee: DREXEL UNIVERSITY
    Inventors: Wei-Heng Shih, Wan Y. Shih, Song Han, Xiaomin Niu, Shi Fang
  • Publication number: 20160297839
    Abstract: An aqueous approach to synthesize capped SnS quantum dots (QDs) followed by optional capping molecule extension by attaching one or more extending molecules to the capping molecule via peptide bond formation at elevated temperature. The capped SnS QDs may have a capping molecule:Sn:S molar ratio of 16:3:1 to 16:12:1. A suspension of SnS QDs was heat-treated at 200° C. for 0.5-4 hrs. The obtained SnS QDs showed an NIR emission peak at 820-835 nm with an excitation wavelength at 690 nm. The as synthesized SnS QDs were found to have high positive zeta potential of ˜30 mV and thus were toxic to cells. By neutralizing the SnS QDs the cytotoxicity was reduced to an accepted level. The heat-treatment step can be obviated by adding a glycerol solution containing S2? anions and capping molecule to a glycerol solution of Sn2+ ions.
    Type: Application
    Filed: April 7, 2016
    Publication date: October 13, 2016
    Applicant: Drexel University
    Inventors: Wei-Heng Shih, Wan Y. Shih, Song Han, Xiaomin Niu, Shi Fang