Patents by Inventor Xiaopei Deng

Xiaopei Deng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240126012
    Abstract: Embodiments of the present disclosure generally relate to methods for forming a waveguide. Methods may include measuring a waveguide substrate, the waveguide having a substrate thickness distribution; and depositing an index-matched layer onto a surface of the waveguide, the index-matched layer having a first surface disposed on the waveguide substrate and a second surface opposing the first surface, wherein the index-matched layer is disposed only over a portion of the waveguide substrate, and a device slope of a second surface of the index-matched layer is substantially the same as the waveguide slope of the first surface of the waveguide.
    Type: Application
    Filed: October 18, 2023
    Publication date: April 18, 2024
    Inventors: Yingdong LUO, Zhengping YAO, Daihua ZHANG, David Alexander SELL, Jingyi YANG, Xiaopei DENG, Kevin MESSER, Samarth BHARGAVA, Rami HOURANI, Ludovic GODET
  • Patent number: 11867931
    Abstract: Embodiments of the present disclosure generally relate to optical devices. More specifically, embodiments described herein relate to optical devices and methods of manufacturing optical devices having optical device structures with at least one of varying depths or refractive indices across the surface of a substrate. According to certain embodiments, an inkjet process is used to deposit a volumetrically variable optical device that is etched to form a diffractive optic element (DOE). Volumetrically variable can relate to the thickness of the optical device, or the relative volume of two or more diffractive materials deposited in combination. According to other embodiments, a single-profile DOE is deposited on a substrate and an inkjet process deposits a volumetrically variable organic material over the DOE. The DOE and organic material are etched to modify the profile of the structure, after which the organic material is removed, leaving the modified-profile DOE.
    Type: Grant
    Filed: September 23, 2021
    Date of Patent: January 9, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Kang Luo, Xiaopei Deng, Daihua Zhang, Ludovic Godet
  • Publication number: 20240001700
    Abstract: A method of forming an optical device is provided. The method includes forming a first layer over a plurality of optical structures, the first layer including a first plurality of nanoparticles and a second plurality of nanoparticles. The first plurality of nanoparticles and the second plurality of nanoparticles are formed of a first material, the first plurality of nanoparticles have a first average volume, greater than 95% of the first plurality of nanoparticles have a volume within 10% of the first average volume, the second plurality of nanoparticles have a second average volume, greater than 95% of the second plurality of nanoparticles have a volume within 10% of the second average volume, and the second average volume is at least 25% larger the first average volume.
    Type: Application
    Filed: June 19, 2023
    Publication date: January 4, 2024
    Inventors: Yingdong LUO, Xiaopei DENG, Rami HOURANI, Ludovic GODET
  • Publication number: 20230359036
    Abstract: A head-mounted, near-eye display system comprises a stack of waveguides having integral spacers separating the waveguides. The waveguides may each include diffractive optical elements that are formed simultaneously with the spacers by imprinting or casting. The spacers are disposed on one or more major surfaces of the waveguides and define a distance between immediately adjacent waveguides. Adjacent waveguides may be bonded using adhesives on the spacers. The spacers may fit within indentations of overlying waveguides. In some cases, the spacers may form one or more walls of material substantially around a perimeter of an associated waveguide. Vent holes may be provided in the walls to allow gas flow into and out from an interior volume defined by the spacers. Debris trapping structures may be provided between two walls of spacers to trap and prevent debris from entering into the interior volume.
    Type: Application
    Filed: June 30, 2023
    Publication date: November 9, 2023
    Inventors: Ling Li, Christophe Peroz, Chieh Chang, Sharad D. Bhagat, Brian George Hill, Melanie Maputol West, Ryan Jason Ong, Xiaopei Deng, Shuqiang Yang, Frank Y. Xu, Ali Karbasi
  • Publication number: 20230356540
    Abstract: Embodiments of the present disclosure relate to methods, systems, and apparatus for inkjet printing self-assembled monolayer (SAM) structures on substrates. In one embodiment, which can be combined with other embodiments, one or more SAM layers are printed on a substrate surface of a substrate in a localized manner such that a portion of the substrate surface is left exposed to a processing region of the inkjet chamber. The printing includes spraying one or more subsections of the substrate surface with an ink, the ink having a SAM composition. The SAM composition includes an active component, and a hydrophobic tail.
    Type: Application
    Filed: May 2, 2023
    Publication date: November 9, 2023
    Inventors: Yingdong LUO, Rami HOURANI, Xiaopei DENG, Kang LUO, Erica CHEN, Ludovic GODET
  • Publication number: 20230341692
    Abstract: Display devices include waveguides with in-coupling optical elements that mitigate re-bounce of in-coupled light to improve overall in-coupling efficiency and/or uniformity. A waveguide receives light from a light source and/or projection optics and includes an in-coupling optical element that in-couples the received light to propagate by total internal reflection in a propagation direction within the waveguide. Once in-coupled into the waveguide the light may undergo re-bounce, in which the light reflects off a waveguide surface and, after the reflection, strikes the in-coupling optical element. Upon striking the in-coupling optical element, the light may be partially absorbed and/or out-coupled by the optical element, thereby effectively reducing the amount of in-coupled light propagating through the waveguide.
    Type: Application
    Filed: May 18, 2023
    Publication date: October 26, 2023
    Inventors: Jeffrey Dean SCHMULEN, Neal Paul RICKS, Samarth BHARGAVA, Kevin MESSER, Victor Kai LIU, Matthew Grant DIXON, Xiaopei DENG, Marlon Edward MENEZES, Shuqiang YANG, Vikramjit SINGH, Kang LUO, Frank Y. XU
  • Publication number: 20230273355
    Abstract: Methods of dicing optical devices from an optical device substrate are disclosed. The methods include disposing a protective coating only over the optical devices. The optical device substrate includes the optical devices disposed on the surface of the optical device substrate with areas therebetween. The areas of the optical device substrate are exposed by the protective coating. The protective coating includes a polymer, a solvent, and an additive. The methods further include curing the protective coating via a cure process so that the protective coating is water-soluble after the solvent is removed by the cure process, dicing the optical devices from the optical device substrate by projecting a laser beam to the areas between the optical devices, and exposing the protective coating to water to remove the protective coating from the optical devices that are diced.
    Type: Application
    Filed: February 23, 2023
    Publication date: August 31, 2023
    Inventors: Yingdong LUO, Kangkang WANG, Wei-Sheng LEI, Xiaopei DENG, Erica CHEN, Kang LUO, Daihua ZHANG, Rami HOURANI, Ludovic GODET
  • Patent number: 11726317
    Abstract: A head-mounted, near-eye display system comprises a stack of waveguides having integral spacers separating the waveguides. The waveguides may each include diffractive optical elements that are formed simultaneously with the spacers by imprinting or casting. The spacers are disposed on one or more major surfaces of the waveguides and define a distance between immediately adjacent waveguides. Adjacent waveguides may be bonded using adhesives on the spacers. The spacers may fit within indentations of overlying waveguides. In some cases, the spacers may form one or more walls of material substantially around a perimeter of an associated waveguide. Vent holes may be provided in the walls to allow gas flow into and out from an interior volume defined by the spacers. Debris trapping structures may be provided between two walls of spacers to trap and prevent debris from entering into the interior volume.
    Type: Grant
    Filed: June 23, 2020
    Date of Patent: August 15, 2023
    Assignee: Magic Leap, Inc.
    Inventors: Ling Li, Ali Karbasi, Christophe Peroz, Chieh Chang, Sharad D. Bhagat, Brian George Hill, Melanie Maputol West, Ryan Jason Ong, Xiaopei Deng, Shuqiang Yang, Frank Y. Xu
  • Publication number: 20230213692
    Abstract: Diffraction gratings provide optical elements in head-mounted display systems to, e.g., incouple light into or out-couple light out of a waveguide. These diffraction gratings may be configured to have reduced polarization sensitivity. Such gratings may, for example, incouple or outcouple light of different polarizations with similar level of efficiency. The diffraction gratings and waveguides may include a transmissive layer and a metal layer. The diffraction grating may comprises a blazed grating.
    Type: Application
    Filed: March 9, 2023
    Publication date: July 6, 2023
    Inventors: Vikramjit Singh, Kang Luo, Xiaopei Deng, Shuqiang Yang, Frank Y. Xu, Kevin Messer
  • Patent number: 11693246
    Abstract: Display devices include waveguides with in-coupling optical elements that mitigate re-bounce of in-coupled light to improve overall in-coupling efficiency and/or uniformity. A waveguide receives light from a light source and/or projection optics and includes an in-coupling optical element that in-couples the received light to propagate by total internal reflection in a propagation direction within the waveguide. Once in-coupled into the waveguide the light may undergo re-bounce, in which the light reflects off a waveguide surface and, after the reflection, strikes the in-coupling optical element. Upon striking the in-coupling optical element, the light may be partially absorbed and/or out-coupled by the optical element, thereby effectively reducing the amount of in-coupled light propagating through the waveguide.
    Type: Grant
    Filed: July 19, 2021
    Date of Patent: July 4, 2023
    Assignee: Magic Leap, Inc.
    Inventors: Jeffrey Dean Schmulen, Neal Paul Ricks, Samarth Bhargava, Kevin Messer, Victor Kai Liu, Matthew Grant Dixon, Xiaopei Deng, Marlon Edward Menezes, Shuqiang Yang, Vikramjit Singh, Kang Luo, Frank Y. Xu
  • Publication number: 20230193064
    Abstract: A method and apparatus for forming an optical device are described. The optical device is formed by depositing a plurality of ink drops on a surface of a substrate. The plurality of ink drops are contained within a chemical stopper, such that the chemical stopper surrounds each individual ink drop. The chemical stopper is configured to reduce reflow of the ink drops and is a fraction of the height of each of the ink drops. The ink drops are baked after being deposited within the chemical stoppers as liquid ink drops.
    Type: Application
    Filed: November 18, 2022
    Publication date: June 22, 2023
    Inventors: Yingdong LUO, Xiaopei DENG, Kang LUO, Rami HOURANI, Daihua ZHANG, Ludovic GODET
  • Publication number: 20230192971
    Abstract: Methods of curing a deformation in a substrate are provided. In some embodiments, the method includes identifying one or more areas on the substrate with deformation. The method further includes printing a first film on a first area of a surface of the substrate via inkjet printing, the first film being a material that polymerizes and contracts when cured. The method includes printing a second film on a second area of the surface of the substrate via inkjet printing, the second film being a material that polymerizes and contracts when cured. The method further includes curing the first film and the second film to induce a bend in the substrate. In some embodiments, the method includes inkjet printing a third film and a fourth film on the surface of the substrate.
    Type: Application
    Filed: December 20, 2022
    Publication date: June 22, 2023
    Inventors: Yingdong LUO, Xiaopei DENG, Kang LUO, Rami HOURANI, Daihua ZHANG, Ludovic GODET
  • Patent number: 11614573
    Abstract: Diffraction gratings provide optical elements in head-mounted display systems to, e.g., incouple light into or out-couple light out of a waveguide. These diffraction gratings may be configured to have reduced polarization sensitivity. Such gratings may, for example, incouple or outcouple light of different polarizations with similar level of efficiency. The diffraction gratings and waveguides may include a transmissive layer and a metal layer. The diffraction grating may comprises a blazed grating.
    Type: Grant
    Filed: September 11, 2020
    Date of Patent: March 28, 2023
    Assignee: Magic Leap, Inc.
    Inventors: Vikramjit Singh, Kang Luo, Xiaopei Deng, Shuqiang Yang, Frank Y. Xu, Kevin Messer
  • Publication number: 20220221723
    Abstract: Embodiments described herein include a waveguide combiner having an edge coated with an optically absorbent composition and a method of coating the edge of the waveguide combiner with the optically absorbent composition. The optically absorbent composition includes one or more types of nanoparticles or microparticles, at least one of one or more dyes or one or more pigments, and a polymer matrix of one or more binders. The method includes producing an optically absorbent formulation. The optically absorbent formulation includes one or more types of particles, at least one of one or more dyes or one or more pigments, one or more binders, and one or more solvents. The optically absorbent formulation is applied on an edge of a waveguide combiner using an edge blackening tool. The formulation is cured with radiation to form the optically absorbent composition.
    Type: Application
    Filed: January 7, 2022
    Publication date: July 14, 2022
    Inventors: Yige GAO, Rami HOURANI, Xiaopei DENG, Amita JOSHI, Ludovic GODET, Kangkang WANG
  • Publication number: 20220128817
    Abstract: Waveguides comprising materials with refractive index greater than or equal to 1.8 and methods of patterning waveguides are disclosed. Patterned waveguides comprising materials with refractive index greater than or equal to 1.8 can be incorporated in display devices, such as, for example wearable display devices to project virtual images to a viewer.
    Type: Application
    Filed: March 11, 2020
    Publication date: April 28, 2022
    Inventors: Vikramjit Singh, Kang Luo, Michal Beau Dennison Vaughn, Samarth Bhargava, Shuqiang Yang, Michael Nevin Miller, Frank Y. Xu, Michael Anthony Klug, Kevin Messer, Robert D. Tekolste, Xiaopei Deng, Xiao Li
  • Publication number: 20220091314
    Abstract: Embodiments of the present disclosure generally relate to optical devices. More specifically, embodiments described herein relate to optical devices and methods of manufacturing optical devices having optical device structures with at least one of varying depths or refractive indices across the surface of a substrate. According to certain embodiments, an inkjet process is used to deposit a volumetrically variable optical device that is etched to form a diffractive optic element (DOE). Volumetrically variable can relate to the thickness of the optical device, or the relative volume of two or more diffractive materials deposited in combination. According to other embodiments, a single-profile DOE is deposited on a substrate and an inkjet process deposits a volumetrically variable organic material over the DOE. The DOE and organic material are etched to modify the profile of the structure, after which the organic material is removed, leaving the modified-profile DOE.
    Type: Application
    Filed: September 23, 2021
    Publication date: March 24, 2022
    Inventors: Kang Luo, Xiaopei Deng, Daihua Zhang, Ludovic Godet
  • Publication number: 20220075118
    Abstract: Recesses are formed on a front side and a rear side of a waveguide. A solid porogen material is spun onto the front side and the rear side and fills the recesses. First front and rear cap layers are then formed on raised formations of the waveguide and on the solid porogen material. The entire structure is then heated and the solid porogen material decomposes to a porogen gas. The first front and rear cap layers are porous to allow the porogen gas to escape and air to enter into the recesses. The air maximizes a difference in refractive indices between the high-index transparent material of the waveguide and the air to promote reflection in the waveguide from interfaces between the waveguide and the air.
    Type: Application
    Filed: December 20, 2019
    Publication date: March 10, 2022
    Applicant: Magic Leap, Inc.
    Inventors: Xiaopei DENG, Vikramjit SINGH, Shuqiang YANG, Kang LUO, Nai-Wen PI, Frank Y. XU
  • Publication number: 20210396987
    Abstract: Fabrication of augmented reality (AR) and mixed reality (MR) polymer eyepiece assemblies and the resulting AR/MR polymer eyepiece assemblies may include one or more features, separately or in any appropriate combination, to compensate for expected deformation and to maintain substantially uniform gaps between polymer layers. Such features include fabricating polymer eyepiece assemblies with components having coefficients of thermal expansion (CTE) that are substantially the same; modifying the surface chemistry or structure of one or more polymer layers to increase hydrophobicity or omniphobicity of the polymer layer; disposing adhesive between adjacent polymer layers in continuous and/or extended configurations; and disposing microspheres of different sizes at selected locations between polymer layers.
    Type: Application
    Filed: October 30, 2019
    Publication date: December 23, 2021
    Inventors: Ling LI, Chieh CHANG, Sharad D. BHAGAT, Christophe PEROZ, William K. JONES, Jr., Xiaopei DENG
  • Publication number: 20210341744
    Abstract: Display devices include waveguides with in-coupling optical elements that mitigate re-bounce of in-coupled light to improve overall in-coupling efficiency and/or uniformity. A waveguide receives light from a light source and/or projection optics and includes an in-coupling optical element that in-couples the received light to propagate by total internal reflection in a propagation direction within the waveguide. Once in-coupled into the waveguide the light may undergo re-bounce, in which the light reflects off a waveguide surface and, after the reflection, strikes the in-coupling optical element. Upon striking the in-coupling optical element, the light may be partially absorbed and/or out-coupled by the optical element, thereby effectively reducing the amount of in-coupled light propagating through the waveguide.
    Type: Application
    Filed: July 19, 2021
    Publication date: November 4, 2021
    Inventors: Jeffrey Dean Schmulen, Neal Paul Ricks, Samarth Bhargava, Kevin Messer, Victor Kai Liu, Matthew Grant Dixon, Xiaopei Deng, Marlon Edward Menezes, Shuqiang Yang, Vikramjit Singh, Kang Luo, Frank Y. Xu
  • Patent number: 11067808
    Abstract: Display devices include waveguides with in-coupling optical elements that mitigate re-bounce of in-coupled light to improve overall in-coupling efficiency and/or uniformity. A waveguide receives light from a light source and/or projection optics and includes an in-coupling optical element that in-couples the received light to propagate by total internal reflection in a propagation direction within the waveguide. Once in-coupled into the waveguide the light may undergo re-bounce, in which the light reflects off a waveguide surface and, after the reflection, strikes the in-coupling optical element. Upon striking the in-coupling optical element, the light may be partially absorbed and/or out-coupled by the optical element, thereby effectively reducing the amount of in-coupled light propagating through the waveguide.
    Type: Grant
    Filed: July 23, 2019
    Date of Patent: July 20, 2021
    Assignee: Magic Leap, Inc.
    Inventors: Jeffrey Dean Schmulen, Neal Paul Ricks, Samarth Bhargava, Kevin Messer, Victor Kai Liu, Matthew Grant Dixon, Xiaopei Deng, Marlon Edward Menezes, Shuqiang Yang, Vikramjit Singh, Kang Luo, Frank Y. Xu