Patents by Inventor Xiaoping Lou

Xiaoping Lou has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9869587
    Abstract: A fiber grating demodulation system for enhancing spectral resolution by finely adjusting a linear array detector, includes a laser pump source, a wavelength division multiplexer, a fiber Bragg grating, a diaphragm, a slit, a collimating mirror, a light splitting grating, an imaging focus mirror, a linear array detector. The laser pump source, the wavelength division multiplexer, and the fiber Bragg grating are connected in sequence, the wavelength division multiplexer is connected to the diaphragm. Light emitted from the laser pump source is multiplexed by the wavelength division multiplexer and then enters the fiber Bragg grating, and a reflection spectrum of the fiber Bragg grating enters the slit of the fiber grating demodulation system as injected light. After passing through the slit, the injected light is reflected by the collimating mirror, the light splitting grating, the imaging focus mirror in sequence, and is finally converged to the linear array detector.
    Type: Grant
    Filed: October 13, 2016
    Date of Patent: January 16, 2018
    Assignee: BEJING INFORMATION SCIENCE & TECHNOLOGY UNIVERSITY
    Inventors: Lianqing Zhu, Wei He, Mingli Dong, Fei Luo, Feng Liu, Xiaoping Lou, Hong Li
  • Patent number: 9869588
    Abstract: A fiber grating demodulation system for enhancing spectral resolution by finely adjusting a slit, includes a laser pump source, a wavelength division multiplexer, a fiber Bragg grating, a diaphragm, a slit, a collimating mirror, a light splitting grating, an imaging focus mirror, and a linear array detector. The laser pump source, the wavelength division multiplexer, the fiber Bragg grating are connected in sequence, and the wavelength division multiplexer is connected to the diaphragm. Light emitted from the laser pump source is multiplexed by the wavelength division multiplexer and then enters the fiber Bragg grating, a reflection spectrum of the fiber Bragg grating enters the slit of the fiber grating demodulation system as injected light. After passing through the slit, the injected light is reflected by the collimating mirror, the light splitting grating, and the imaging focus mirror in sequence, and is finally converged to the linear array detector.
    Type: Grant
    Filed: October 13, 2016
    Date of Patent: January 16, 2018
    Assignee: BEIJING INFORMATION SCIENCE & TECHNOLOGY UNIVERSITY
    Inventors: Lianqing Zhu, Wei He, Feng Liu, Mingli Dong, Xiaoping Lou, Hong Li, Fei Luo
  • Patent number: 9784618
    Abstract: A fiber grating demodulation system for enhancing spectral resolution by finely adjusting a light splitting grating, includes a laser pump source, a wavelength division multiplexer, a fiber Bragg grating, a diaphragm, a slit, a collimating mirror, a light splitting grating, an imaging focus mirror, and a linear array detector. The laser pump source, the wavelength division multiplexer, the fiber Bragg grating are connected in sequence, the wavelength division multiplexer is connected to the diaphragm. Light emitted from the laser pump source is multiplexed by the wavelength division multiplexer and then enters the fiber Bragg grating, a reflection spectrum of the fiber Bragg grating enters the slit of the fiber grating demodulation system as injected light. After passing through the slit, the injected light is reflected by the collimating mirror, the light splitting grating, and the imaging focus mirror in sequence, and is finally converged to the linear array detector.
    Type: Grant
    Filed: October 13, 2016
    Date of Patent: October 10, 2017
    Assignee: BEIJING INFORMATION SCIENCE & TECHNOLOGY UNIVERSITY
    Inventors: Lianqing Zhu, Wei He, Feng Liu, Mingli Dong, Xiaoping Lou, Wei Zhuang, Fei Luo
  • Patent number: 9784619
    Abstract: A fiber grating demodulation system for enhancing spectral resolution of a detector array, includes a laser pump source, a wavelength division multiplexer, a fiber Bragg grating, a diaphragm, a slit, a collimating mirror, a light splitting grating, an imaging focus mirror, and a linear array detector. The laser pump source, the wavelength division multiplexer, and the fiber Bragg grating are connected in sequence, and the wavelength division multiplexer is connected to the diaphragm. Light emitted from the laser pump source is multiplexed by the wavelength division multiplexer and then enters the fiber Bragg grating. A reflection spectrum of the fiber Bragg grating enters the slit of the fiber grating demodulation system as injected light. After passing through the slit, the injected light is reflected by the collimating mirror. The light splitting grating, and the imaging focus mirror in sequence, and is finally converged to the linear array detector.
    Type: Grant
    Filed: October 13, 2016
    Date of Patent: October 10, 2017
    Assignee: BEIJING INFORMATION SCIENCE & TECHNOLOGY UNIVERSITY
    Inventors: Lianqing Zhu, Kuo Meng, Fei Luo, Wei He, Feng Liu, Xiaoping Lou, Mingli Dong, Fan Zhang, Hong Li, Wei Zhuang
  • Patent number: 9683892
    Abstract: A fiber grating demodulation system for enhancing spectral resolution by finely adjusting an imaging focus mirror, includes a laser pump source, a wavelength division multiplexer, a fiber Bragg grating, a diaphragm, a slit, a collimating mirror, a light splitting grating, an imaging focus mirror, a linear array detector. The laser pump source, the wavelength division multiplexer, the fiber Bragg grating are connected in sequence, the wavelength division multiplexer is connected to the diaphragm. Light emitted from the laser pump source is multiplexed by the wavelength division multiplexer and then enters the fiber Bragg grating, a reflection spectrum of the fiber Bragg grating enters the slit of the fiber grating demodulation system as injected light. After passing through the slit, the injected light is reflected by the collimating mirror, the light splitting grating, and the imaging focus mirror in sequence, and is finally converged to the linear array detector.
    Type: Grant
    Filed: October 13, 2016
    Date of Patent: June 20, 2017
    Assignee: BEIJING INFORMATION SCIENCE & TECHNOLOGY UNIVERSITY
    Inventors: Lianqing Zhu, Wei He, Xiaoping Lou, Feng Liu, Mingli Dong, Fei Luo, Wei Zhuang
  • Publication number: 20170108380
    Abstract: A fiber grating demodulation system for enhancing spectral resolution by finely adjusting a light splitting grating, includes a laser pump source, a wavelength division multiplexer, a fiber Bragg grating, a diaphragm, a slit, a collimating mirror, a light splitting grating, an imaging focus mirror, and a linear array detector. The laser pump source, the wavelength division multiplexer, the fiber Bragg grating are connected in sequence, the wavelength division multiplexer is connected to the diaphragm. Light emitted from the laser pump source is multiplexed by the wavelength division multiplexer and then enters the fiber Bragg grating, a reflection spectrum of the fiber Bragg grating enters the slit of the fiber grating demodulation system as injected light. After passing through the slit, the injected light is reflected by the collimating mirror, the light splitting grating, and the imaging focus mirror in sequence, and is finally converged to the linear array detector.
    Type: Application
    Filed: October 13, 2016
    Publication date: April 20, 2017
    Inventors: Lianqing ZHU, Wei HE, Feng LIU, Mingli DONG, Xiaoping LOU, Wei ZHUANG, Fei LUO
  • Publication number: 20170108378
    Abstract: A fiber grating demodulation system for enhancing spectral resolution by finely adjusting an imaging focus mirror, includes a laser pump source, a wavelength division multiplexer, a fiber Bragg grating, a diaphragm, a slit, a collimating mirror, a light splitting grating, an imaging focus mirror, a linear array detector. The laser pump source, the wavelength division multiplexer, the fiber Bragg grating are connected in sequence, the wavelength division multiplexer is connected to the diaphragm. Light emitted from the laser pump source is multiplexed by the wavelength division multiplexer and then enters the fiber Bragg grating, a reflection spectrum of the fiber Bragg grating enters the slit of the fiber grating demodulation system as injected light. After passing through the slit, the injected light is reflected by the collimating mirror, the light splitting grating, and the imaging focus mirror in sequence, and is finally converged to the linear array detector.
    Type: Application
    Filed: October 13, 2016
    Publication date: April 20, 2017
    Inventors: Lianqing Zhu, Wei He, Xiaoping Lou, Feng Liu, Mingli Dong, Fei Luo, Wei Zhuang
  • Publication number: 20170108379
    Abstract: A fiber grating demodulation system for enhancing spectral resolution by finely adjusting a linear array detector, includes a laser pump source, a wavelength division multiplexer, a fiber Bragg grating, a diaphragm, a slit, a collimating mirror, a light splitting grating, an imaging focus mirror, a linear array detector. The laser pump source, the wavelength division multiplexer, and the fiber Bragg grating are connected in sequence, the wavelength division multiplexer is connected to the diaphragm. Light emitted from the laser pump source is multiplexed by the wavelength division multiplexer and then enters the fiber Bragg grating, and a reflection spectrum of the fiber Bragg grating enters the slit of the fiber grating demodulation system as injected light. After passing through the slit, the injected light is reflected by the collimating mirror, the light splitting grating, the imaging focus mirror in sequence, and is finally converged to the linear array detector.
    Type: Application
    Filed: October 13, 2016
    Publication date: April 20, 2017
    Inventors: Lianqing ZHU, Wei He, Mingli Dong, Fei Luo, Feng Liu, Xiaoping Lou, Hong Li
  • Publication number: 20170102269
    Abstract: A fiber grating demodulation system for enhancing spectral resolution of a detector array, includes a laser pump source, a wavelength division multiplexer, a fiber Bragg grating, a diaphragm, a slit, a collimating mirror, a light splitting grating, an imaging focus mirror, and a linear array detector. The laser pump source, the wavelength division multiplexer, and the fiber Bragg grating are connected in sequence, and the wavelength division multiplexer is connected to the diaphragm. Light emitted from the laser pump source is multiplexed by the wavelength division multiplexer and then enters the fiber Bragg grating. A reflection spectrum of the fiber Bragg grating enters the slit of the fiber grating demodulation system as injected light. After passing through the slit, the injected light is reflected by the collimating mirror. The light splitting grating, and the imaging focus mirror in sequence, and is finally converged to the linear array detector.
    Type: Application
    Filed: October 13, 2016
    Publication date: April 13, 2017
    Inventors: Lianqing ZHU, Kuo Meng, Fei Luo, Wei He, Feng Liu, Xiaoping Lou, Mingli Dong, Fan Zhang, Hong Li, Wei Zhuang
  • Publication number: 20170102268
    Abstract: A fiber grating demodulation system for enhancing spectral resolution by finely adjusting a slit, includes a laser pump source, a wavelength division multiplexer, a fiber Bragg grating, a diaphragm, a slit, a collimating mirror, a light splitting grating, an imaging focus mirror, and a linear array detector. The laser pump source, the wavelength division multiplexer, the fiber Bragg grating are connected in sequence, and the wavelength division multiplexer is connected to the diaphragm. Light emitted from the laser pump source is multiplexed by the wavelength division multiplexer and then enters the fiber Bragg grating, a reflection spectrum of the fiber Bragg grating enters the slit of the fiber grating demodulation system as injected light. After passing through the slit, the injected light is reflected by the collimating mirror, the light splitting grating, and the imaging focus mirror in sequence, and is finally converged to the linear array detector.
    Type: Application
    Filed: October 13, 2016
    Publication date: April 13, 2017
    Inventors: Lianqing ZHU, Wei HE, Feng Liu, Mingli Dong, Xiaoping Lou, Hong Li, Fei Luo
  • Patent number: 9574939
    Abstract: A fiber grating demodulation system for enhancing spectral resolution by finely adjusting a collimating mirror, includes a laser pump source, a wavelength division multiplexer, a fiber Bragg grating, a diaphragm, a slit, a collimating mirror, a light splitting grating, an imaging focus mirror, a linear array detector. The laser pump source, the wavelength division multiplexer, and the fiber Bragg grating are connected in sequence, the wavelength division multiplexer is connected to the diaphragm Light emitted from the laser pump source is multiplexed by the wavelength division multiplexer and then enters the fiber Bragg grating, a reflection spectrum of the fiber Bragg grating enters the slit of the fiber grating demodulation system as injected light. After passing through the slit, the injected light is reflected by the collimating mirror, the light splitting grating, and the imaging focus mirror in sequence, and is finally converged to the linear array detector.
    Type: Grant
    Filed: October 13, 2016
    Date of Patent: February 21, 2017
    Assignee: BEIJING INFORMATION SCIENCE & TECHNOLOGY UNIVERSITY
    Inventors: Lianqing Zhu, Wei He, Feng Liu, Fei Luo, Mingli Dong, Xiaoping Lou, Fan Zhang
  • Patent number: 8896302
    Abstract: A method for measuring magnetic induction intensity of a magnetic field using a short cavity fiber laser, includes the steps of: a) arranging the short cavity fiber laser, where the short cavity laser has sequentially coupled laser diode pumping source, a wavelength division multiplexer, a fiber Bragg grating, an active optical fiber and a loop mirror; b) fixing the short cavity fiber laser on a magnetostrictive material; c) disposing the short cavity fiber laser and the magnetostrictive material in the magnetic field to be measured, and matching the stretching direction of the magnetostrictive material with the direction of the magnetic field to be measured; d) measuring the drift amount of longitudinal mode output by the short cavity fiber laser; and e) calculating the magnetic induction intensity of the magnetic field to be measured.
    Type: Grant
    Filed: October 9, 2013
    Date of Patent: November 25, 2014
    Assignee: Beijing Information Science & Technology University
    Inventors: Lianqing Zhu, Fei Luo, Yinmin Zhang, Wei He, Mingli Dong, Xiaoping Lou, Yudong Jia
  • Patent number: 8794828
    Abstract: A method for measuring temperature of an object using the longitudinal mode output by a short cavity fiber laser, includes steps of: a) arranging the short cavity fiber laser, which laser comprises sequentially coupled laser diode pumping source, a wavelength division multiplexer, a fiber bragg grating, an active optical fiber and a loop mirror which are; b) contacting the short cavity fiber laser with the object whose temperature will be measured; c) measuring the drift amount of longitudinal mode output by the short cavity fiber laser; and d) calculating the temperature of the object to be measured. According to the present invention, the temperature can be measured accurately utilizing the features of the short cavity fiber laser. The arranged fiber laser has a small and simple structure, high measuring accuracy, good portability, and can be used in a variety of occasions.
    Type: Grant
    Filed: October 9, 2013
    Date of Patent: August 5, 2014
    Assignee: Beijing Information Science & Technology University
    Inventors: Lianqing Zhu, Fei Luo, Mingli Dong, Yinmin Zhang, Wei He, Xiaoping Lou