Patents by Inventor Xiaorong Morrow

Xiaorong Morrow has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8299617
    Abstract: Described is a method and apparatus for forming interconnects with a metal-metal oxide electromigration barrier and etch-stop. In one embodiment of the invention, the method includes depositing a metal layer on the top of a planarized interconnect layer, the interconnect layer having an interlayer dielectric (ILD) with a top that is planar with the top of an electrically conductive interconnect. In one embodiment of the invention, the method includes reacting the metal layer with the ILD to form a metal oxide layer on the top of the ILD. At the same time, the metal layer will not be significantly oxidized by the electrically conductive interconnect, thus forming a metal barrier on the electrically conductive interconnect to improve electromigration performance. The metal barrier and metal oxide layer together comprise a protective layer. A second ILD may be subsequently formed on the protective layer, and the protective layer may act an etch-stop during a subsequent etch of the second ILD.
    Type: Grant
    Filed: April 19, 2010
    Date of Patent: October 30, 2012
    Assignee: Intel Corporation
    Inventors: Xiaorong Morrow, Jihperng Leu, Markus Kuhn, Jose A. Maiz
  • Publication number: 20100219529
    Abstract: Described is a method and apparatus for forming interconnects with a metal-metal oxide electromigration barrier and etch-stop. In one embodiment of the invention, the method includes depositing a metal layer on the top of a planarized interconnect layer, the interconnect layer having an interlayer dielectric (ILD) with a top that is planar with the top of an electrically conductive interconnect. In one embodiment of the invention, the method includes reacting the metal layer with the ILD to form a metal oxide layer on the top of the ILD. At the same time, the metal layer will not be significantly oxidized by the electrically conductive interconnect, thus forming a metal barrier on the electrically conductive interconnect to improve electromigration performance. The metal barrier and metal oxide layer together comprise a protective layer. A second ILD may be subsequently formed on the protective layer, and the protective layer may act an etch-stop during a subsequent etch of the second ILD.
    Type: Application
    Filed: April 19, 2010
    Publication date: September 2, 2010
    Inventors: Xiaorong Morrow, Jihperng Leu, Markus Kuhn, Jose A. Maiz
  • Patent number: 7727892
    Abstract: Described is a method and apparatus for forming interconnects with a metal-metal oxide electromigration barrier and etch-stop. In one embodiment of the invention, the method includes depositing a metal layer on the top of a planarized interconnect layer, the interconnect layer having an interlayer dielectric (ILD) with a top that is planar with the top of an electrically conductive interconnect. In one embodiment of the invention, the method includes reacting the metal layer with the ILD to form a metal oxide layer on the top of the ILD. At the same time, the metal layer will not be significantly oxidized by the electrically conductive interconnect, thus forming a metal barrier on the electrically conductive interconnect to improve electromigration performance. The metal barrier and metal oxide layer together comprise a protective layer. A second ILD may be subsequently formed on the protective layer, and the protective layer may act an etch-stop during a subsequent etch of the second ILD.
    Type: Grant
    Filed: September 25, 2002
    Date of Patent: June 1, 2010
    Assignee: Intel Corporation
    Inventors: Xiaorong Morrow, Jihperng Leu, Markus Kuhn, Jose A. Maiz
  • Patent number: 7456490
    Abstract: A method and structure for sealing porous dielectrics using silane coupling reagents is herein described. A sealant chain (silane coupling reagent) is formed from at least silicon, carbon, oxygen, and hydrogen and exposed to a porous dielectric material, wherein the sealant chain reacts with a second chain, that has at least oxygen and is present in the porous dielectric defining the pores, to form a continuous layer over the surface of the porous dielectric.
    Type: Grant
    Filed: September 5, 2006
    Date of Patent: November 25, 2008
    Assignee: Intel Corporation
    Inventors: Grant Kloster, Chih-I Wu, Xiaorong Morrow
  • Patent number: 7339271
    Abstract: Described is a method and apparatus for forming interconnects with a metal-metal oxide electromigration barrier and etch-stop. In one embodiment of the invention, the method includes depositing a metal layer on the top of a planarized interconnect layer, the interconnect layer having an interlayer dielectric (ILD) with a top that is planar with the top of an electrically conductive interconnect. In one embodiment of the invention, the method includes reacting the metal layer with the ILD to form a metal oxide layer on the top of the ILD. At the same time, the metal layer will not be significantly oxidized by the electrically conductive interconnect, thus forming a metal barrier on the electrically conductive interconnect to improve electromigration performance. The metal barrier and metal oxide layer together comprise a protective layer. A second ILD may be subsequently formed on the protective layer, and the protective layer may act an etch-stop during a subsequent etch of the second ILD.
    Type: Grant
    Filed: June 3, 2004
    Date of Patent: March 4, 2008
    Assignee: Intel Corporation
    Inventors: Xiaorong Morrow, Jihperng Leu, Markus Kuhn, Jose A. Maiz
  • Publication number: 20070066079
    Abstract: A method and structure for sealing porous dielectrics using silane coupling reagents is herein described. A sealant chain (silane coupling reagent) is formed from at least silicon, carbon, oxygen, and hydrogen and exposed to a porous dielectric material, wherein the sealant chain reacts with a second chain, that has at least oxygen and is present in the porous dielectric defining the pores, to form a continuous layer over the surface of the porous dielectric.
    Type: Application
    Filed: September 5, 2006
    Publication date: March 22, 2007
    Inventors: Grant Kloster, Chih-I Wu, Xiaorong Morrow
  • Patent number: 7122481
    Abstract: A method and structure for sealing porous dielectrics using silane coupling reagents is herein described. A sealant chain (silane coupling reagent) is formed from at least silicon, carbon, oxygen, and hydrogen and exposed to a porous dielectric material, wherein the sealant chain reacts with a second chain, that has at least oxygen and is present in the porous dielectric defining the pores, to form a continuous layer over the surface of the porous dielectric.
    Type: Grant
    Filed: July 25, 2003
    Date of Patent: October 17, 2006
    Assignee: Intel Corporation
    Inventors: Grant Kloster, Chih-I Wu, Xiaorong Morrow
  • Publication number: 20050020074
    Abstract: A method and structure for sealing porous dielectrics using silane coupling reagents is herein described. A sealant chain (silane coupling reagent) is formed from at least silicon, carbon, oxygen, and hydrogen and exposed to a porous dielectric material, wherein the sealant chain reacts with a second chain, that has at least oxygen and is present in the porous dielectric defining the pores, to form a continuous layer over the surface of the porous dielectric.
    Type: Application
    Filed: July 25, 2003
    Publication date: January 27, 2005
    Inventors: Grant Kloster, Chih-I Wu, Xiaorong Morrow
  • Publication number: 20040224515
    Abstract: Described is a method and apparatus for forming interconnects with a metal-metal oxide electromigration barrier and etch-stop. In one embodiment of the invention, the method includes depositing a metal layer on the top of a planarized interconnect layer, the interconnect layer having an interlayer dielectric (ILD) with a top that is planar with the top of an electrically conductive interconnect. In one embodiment of the invention, the method includes reacting the metal layer with the ILD to form a metal oxide layer on the top of the ILD. At the same time, the metal layer will not be significantly oxidized by the electrically conductive interconnect, thus forming a metal barrier on the electrically conductive interconnect to improve electromigration performance. The metal barrier and metal oxide layer together comprise a protective layer. A second ILD may be subsequently formed on the protective layer, and the protective layer may act an etch-stop during a subsequent etch of the second ILD.
    Type: Application
    Filed: June 3, 2004
    Publication date: November 11, 2004
    Inventors: Xiaorong Morrow, Jihperng Leu, Markus Kuhn, Jose A. Maiz
  • Patent number: 6794755
    Abstract: Described is a method and apparatus for altering the top surface of a metal interconnect. In one embodiment of the invention, a metal interconnect and a barrier layer are formed into an interlayer dielectric (ILD) and the metal interconnect and the barrier layer are planarized to the top of the ILD. The top surfaces of the metal interconnect, the barrier layer, and the ILD are altered with a second metal to form an electromigration barrier. In one embodiment of the invention, the second metal is prevented from contaminating the electrical resistivity of the metal interconnect.
    Type: Grant
    Filed: March 25, 2003
    Date of Patent: September 21, 2004
    Assignee: Intel Corporation
    Inventors: Jose A. Maiz, Xiaorong Morrow, Thomas Marieb, Carolyn Block, Jihperng Leu, Paul McGregor, Markus Kuhn, Mitchell C. Taylor
  • Publication number: 20040102031
    Abstract: A low-k dielectric sacrificial material is formed within a microelectronic structure covered with a suitable porous or low density permeable material. At an appropriate time, the underlying sacrificial material is decomposed and diffused away through the overlying permeable material. As a result, at least one void is created, contributing to desirable dielectric characteristics.
    Type: Application
    Filed: November 21, 2002
    Publication date: May 27, 2004
    Inventors: Grant M. Kloster, Xiaorong Morrow, Jihperng Leu
  • Publication number: 20040058547
    Abstract: Described is a method and apparatus for forming interconnects with a metal-metal oxide electromigration barrier and etch-stop. In one embodiment of the invention, the method includes depositing a metal layer on the top of a planarized interconnect layer, the interconnect layer having an interlayer dielectric (ILD) with a top that is planar with the top of an electrically conductive interconnect. In one embodiment of the invention, the method includes reacting the metal layer with the ILD to form a metal oxide layer on the top of the ILD. At the same time, the metal layer will not be significantly oxidized by the electrically conductive interconnect, thus forming a metal barrier on the electrically conductive interconnect to improve electromigration performance. The metal barrier and metal oxide layer together comprise a protective layer. A second ILD may be subsequently formed on the protective layer, and the protective layer may act an etch-stop during a subsequent etch of the second ILD.
    Type: Application
    Filed: September 25, 2002
    Publication date: March 25, 2004
    Inventors: Xiaorong Morrow, Jihperng Leu, Markus Kuhn, Jose A. Maiz
  • Publication number: 20040056366
    Abstract: Described is a method and apparatus for altering the top surface of a metal interconnect. In one embodiment of the invention, a metal interconnect and a barrier layer are formed into an interlayer dielectric (ILD) and the metal interconnect and the barrier layer are planarized to the top of the ILD. The top surfaces of the metal interconnect, the barrier layer, and the ILD are altered with a second metal to form an electromigration barrier. In one embodiment of the invention, the second metal is prevented from contaminating the electrical resistivity of the metal interconnect.
    Type: Application
    Filed: September 25, 2002
    Publication date: March 25, 2004
    Inventors: Jose A. Maiz, Xiaorong Morrow, Thomas Marieb, Carolyn Block, Jihperng Leu, Paul McGregor, Markus Kuhn, Mitchell C. Taylor
  • Publication number: 20040056329
    Abstract: Described is a method and apparatus for altering the top surface of a metal interconnect. In one embodiment of the invention, a metal interconnect and a barrier layer are formed into an interlaver dielectric (ILD) and the metal interconnect and the barrier layer are planarized to the top of the ILD. The top surfaces of the metal interconnect, the barrier layer, and the ILD are altered with a second metal to form an electromigration barrier. In one embodiment of the invention, the second metal is prevented from contaminating the electrical resistivity of the metal interconnect.
    Type: Application
    Filed: March 25, 2003
    Publication date: March 25, 2004
    Inventors: Jose A. Maiz, Xiaorong Morrow, Thomas Marieb, Carolyn Block, Jihperng Leu, Paul McGregor, Markus Kuhn, Mitchell C. Taylor
  • Patent number: 6661094
    Abstract: A semiconductor device and an improved method for making it are described. The semiconductor device comprises a dual damascene interconnect that includes a conductive line. The device further includes a support structure that is spaced from the conductive line, and an insulating layer that is formed on the support structure and the conductive line. In the method for forming that device, a support structure is formed on a substrate, and an insulating layer is formed adjacent to it. Portions of the insulating layer are removed to form a via and a trench, which are filled with a conductive material to generate a dual damascene interconnect that includes a conductive line, wherein the conductive line is spaced from the support structure.
    Type: Grant
    Filed: June 25, 2002
    Date of Patent: December 9, 2003
    Assignee: Intel Corporation
    Inventors: Patrick Morrow, Xiaorong Morrow
  • Publication number: 20020140104
    Abstract: A semiconductor device and an improved method for making it are described. The semiconductor device comprises a dual damascene interconnect that includes a conductive line. The device further includes a support structure that is spaced from the conductive line, and an insulating layer that is formed on the support structure and the conductive line. In the method for forming that device, a support structure is formed on a substrate, and an insulating layer is formed adjacent to it. Portions of the insulating layer are removed to form a via and a trench, which are filled with a conductive material to generate a dual damascene interconnect that includes a conductive line, wherein the conductive line is spaced from the support structure.
    Type: Application
    Filed: March 27, 2001
    Publication date: October 3, 2002
    Inventors: Patrick Morrow, Xiaorong Morrow
  • Patent number: 6448177
    Abstract: A semiconductor device and an improved method for making it are described. The semiconductor device comprises a dual damascene interconnect that includes a conductive line. The device further includes a support structure that is spaced from the conductive line, and an insulating layer that is formed on the support structure and the conductive line. In the method for forming that device, a support structure is formed on a substrate, and an insulating layer is formed adjacent to it. Portions of the insulating layer are removed to form a via and a trench, which are filled with a conductive material to generate a dual damascene interconnect that includes a conductive line, wherein the conductive line is spaced from the support structure.
    Type: Grant
    Filed: March 27, 2001
    Date of Patent: September 10, 2002
    Assignee: Intle Corporation
    Inventors: Patrick Morrow, Xiaorong Morrow