Patents by Inventor Xiaosi Zeng

Xiaosi Zeng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11921504
    Abstract: Techniques for generating simulations to evaluate an update to a controller. The controller may be configured to control one or more functionalities of an autonomous and/or a semi-autonomous vehicle. A simulation computing system may receive a request to evaluate a first controller. The simulation computing system may generate a simulation based on data associated with a previous operation of the vehicle in an environment, the previous operation being controlled by a second controller (e.g., standard for evaluation, control version, etc.). The simulation computing device may cause the first controller to control a simulated vehicle in the simulation and may determine whether to validate the update to the controller based on a difference between first metrics associated with a control of the simulated vehicle by the first controller and second metrics associated with a control of the vehicle by the second controller.
    Type: Grant
    Filed: December 29, 2020
    Date of Patent: March 5, 2024
    Assignee: Zoox, Inc.
    Inventors: Eric Yan Tin Chu, Robert Jonathan Crane, John Connelly Kegelman, Deepan Subrahmanian Palguna, Prateek Chandresh Shah, Xiaosi Zeng, Wentao Zhong
  • Publication number: 20230159060
    Abstract: Techniques for determining unified futures of objects in an environment are discussed herein. Techniques may include determining a first feature associated with an object in an environment and a second feature associated with the environment and based on a position of the object in the environment, updating a graph neural network (GNN) to encode the first feature and second feature into a graph node representing the object and encode relative positions of additional objects in the environment into one or more edges attached to the node. The GNN may be decoded to determine a distribution of predicted positions for the object in the future that meet a criterion, allowing for more efficient sampling. A predicted position of the object in the future may be determined by sampling from the distribution.
    Type: Application
    Filed: November 24, 2021
    Publication date: May 25, 2023
    Inventors: Gowtham Garimella, Marin Kobilarov, Andres Guillermo Morales Morales, Ethan Miller Pronovost, Kai Zhenyu Wang, Xiaosi Zeng
  • Publication number: 20230159059
    Abstract: Techniques for determining unified futures of objects in an environment are discussed herein. Techniques may include determining a first feature associated with an object in an environment and a second feature associated with the environment and based on a position of the object in the environment, updating a graph neural network (GNN) to encode the first feature and second feature into a graph node representing the object and encode relative positions of additional objects in the environment into one or more edges attached to the node. The GNN may be decoded to determine a predicted position of the object at a subsequent timestep. Further, a predicted trajectory of the object may be determined using predicted positions of the object at various timesteps.
    Type: Application
    Filed: November 24, 2021
    Publication date: May 25, 2023
    Inventors: Gowtham Garimella, Marin Kobilarov, Andres Guillermo Morales Morales, Ethan Miller Pronovost, Kai Zhenyu Wang, Xiaosi Zeng