Patents by Inventor Xiaotian Li

Xiaotian Li has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250145180
    Abstract: The Intelligent Information Conversion System (IICS) facilitates real-time dynamic information exchange among connected and automated vehicle (CAV), roadside intelligent unit (RIU), and cloud platform. The system comprises a codebook, coding module, connector module, and supporting system. The codebook provides a standardized format for information exchange, using a sequence of integers corresponding to various categories such as vehicle automation level, vehicle type, and road category. The coding module encodes and decodes information to enable seamless communication among CAV, RIU, and cloud platform, optimizing data transmission and service levels for autonomous driving. The system supports sorting, encoding, and decoding information into a codebook string, improving real-time interaction and information flow across connected environments. It enhances vehicle automation and supports dynamic, context sensitive data exchanges between different entities in the autonomous ecosystem.
    Type: Application
    Filed: January 10, 2025
    Publication date: May 8, 2025
    Inventors: Bin Ran, Renfei Wu, Hanchu Li, Yang Cheng, Kun Zhou, Xiangliang Tuo, Wanming Zhang, Chang Xu, Xiaotian Li, Keshu Wu
  • Patent number: 12279191
    Abstract: Provided herein is technology relating to aspects of a Distributed Driving System (DDS) for managing Connected and Automated Vehicles (CAV) and particularly, but not exclusively, to systems, designs, and methods for a Device Allocation System (DAS) configured to allocate and distribute resources to devices of a Distributed Driving Systems (DDS).
    Type: Grant
    Filed: March 4, 2021
    Date of Patent: April 15, 2025
    Assignee: CAVH LLC
    Inventors: Bin Ran, Shuoxuan Dong, Yang Cheng, Tianyi Chen, Shen Li, Xiaotian Li, Kunsong Shi, Haotian Shi, Keshu Wu, Yifan Yao, Ran Yi
  • Patent number: 12266262
    Abstract: Provided herein is a technology for an Autonomous Vehicle Cloud System (AVCS). This AVCS provides sensing, data fusion, prediction, decision-making, and/or control instructions for specific vehicles at a microscopic level based on data from one or more of other vehicles, roadside unit (RSU), cloud-based platform, and traffic control center/traffic control unit (TCC/TCU). Specifically, the AVs can be effectively and efficiently operated and controlled by the AVCS. The AVCS provides individual vehicles with detailed time-sensitive control instructions for fulfilling driving tasks, including car following, lane changing, route guidance, and other related information. The AVCS is configured to predict individual vehicle behavior and provide planning and decision-making at a microscopic level. In addition, the AVCS is configured to provide one or more of virtual traffic light management, travel demand assignment, traffic state estimation, and platoon control.
    Type: Grant
    Filed: July 28, 2023
    Date of Patent: April 1, 2025
    Assignee: CAVH LLC
    Inventors: Bin Ran, Yuan Zheng, Can Wang, Yang Cheng, Yifan Yao, Keshu Wu, Tianyi Chen, Haotian Shi, Shen Li, Kunsong Shi, Zhen Zhang, Fan Ding, Huachun Tan, Yuankai Wu, Shuoxuan Dong, Linhui Ye, Xiaotian Li
  • Patent number: 12260746
    Abstract: Provided herein is a technology for an Autonomous Vehicle Intelligent System (AVIS), which facilitates vehicle operations and control for autonomous driving. The AVIS and related methods provide vehicles with vehicle-specific information for a vehicle to perform driving tasks such as car following, lane changing, and route guidance. The AVIS comprises an onboard unit (OBU), wherein the OBU comprises a communication module communicating with one or more of other autonomous vehicles (AV), a roadside unit (RSU), a cloud platform, and a traffic control center/traffic control unit (TCC/TCU). The AVIS implements one or more of the following functions: sensing, prediction, decision-making, and vehicle control using onboard information and vehicle-specific information received from other AVs, the RSU, the cloud platform, and/or the TCC/TCU.
    Type: Grant
    Filed: July 28, 2023
    Date of Patent: March 25, 2025
    Assignee: CAVH LLC
    Inventors: Bin Ran, Bingjie Liang, Yan Zhao, Yang Cheng, Yifan Yao, Keshu Wu, Tianyi Chen, Haotian Shi, Shen Li, Kunsong Shi, Zhen Zhang, Fan Ding, Huachun Tan, Yuankai Wu, Shuoxuan Dong, Linhui Ye, Xiaotian Li
  • Publication number: 20250095480
    Abstract: The invention provides systems and methods for a computing power allocation system for autonomous driving (CPAS-AD), which is a component of an Intelligent Road Infrastructure System (IRIS). The CPAS-AD incorporates advanced computing capabilities that effectively allocate computational power for sensing, prediction, planning, decision-making, and control functions to enable end-to-end driving functions. In addition to the vehicle, the CPAS-AD can acquire additional computation resources from one or more of: (a) a roadside unit (RSU) network, (b) a cloud platform, (c) a traffic control center/traffic control unit (TCC/TCU), and (d) a traffic operations center (TOC). Additionally, tailored to different traffic scenarios, the CPAS-AD can allocate data and computation resources (including but not limited to CPU and GPU) for vehicle sensing, prediction, planning, decision-making, and control functions, thereby enabling safe and efficient autonomous driving.
    Type: Application
    Filed: November 26, 2024
    Publication date: March 20, 2025
    Inventors: Bin Ran, Bingjie Liang, Yan Zhao, Haozhan Ma, Renfei Wu, Yang Cheng, Yifan Yao, Keshu Wu, Tianyi Chen, Haotian Shi, Shen Li, Kunsong Shi, Zhen Zhang, Fan Ding, Huachun Tan, Yuankai Wu, Shuoxuan Dong, Linhui Ye, Xiaotian Li
  • Publication number: 20250087081
    Abstract: The invention provides systems and methods for a function-based computing power allocation system (FCPAS), which is a component of an Intelligent Road Infrastructure System (IRIS). The FCPAS incorporates advanced computing capabilities that effectively allocate computational power for prediction, planning, and decision making functions. Specifically, through the FCPAS, an AV can acquire additional computational resources for vehicle prediction, planning, and decision-making functions, thereby enabling safe and efficient autonomous driving. Additionally, tailored to different traffic scenarios, the FCPAS can allocate data and computational resources (including but not limited to CPU and GPU) for vehicle automation.
    Type: Application
    Filed: November 26, 2024
    Publication date: March 13, 2025
    Inventors: Bin Ran, Bingjie Liang, Yan Zhao, Zhiyu Wang, Junfeng Jiang, Yang Cheng, Yifan Yao, Keshu Wu, Tianyi Chen, Haotian Shi, Shen Li, Kunsong Shi, Zhen Zhang, Fan Ding, Huachun Tan, Yuankai Wu, Shuoxuan Dong, Linhui Ye, Xiaotian Li
  • Patent number: 12243423
    Abstract: The technology provided herein relates to a roadside infrastructure sensing system for Intelligent Road Infrastructure Systems (IRIS) and, in particular, to devices, systems, and methods for data fusion and communication that provide proactive sensing support to connected and automated vehicle highway (CAVH) systems.
    Type: Grant
    Filed: August 2, 2022
    Date of Patent: March 4, 2025
    Assignee: CAVH LLC
    Inventors: Bin Ran, Huachun Tan, Zhen Zhang, Yang Cheng, Xiaotian Li, Tianyi Chen, Shuoxuan Dong, Kunsong Shi
  • Patent number: 12195043
    Abstract: Provided herein is technology relating to automated driving and particularly, but not exclusively, to an intelligent information conversion system and related methods for providing collaborative automatic driving to intelligent transportation systems, vehicle networking systems, collaborative management control systems, vehicle-road collaborative systems, automated driving systems, and the like.
    Type: Grant
    Filed: January 7, 2022
    Date of Patent: January 14, 2025
    Assignee: CAVH LLC
    Inventors: Bin Ran, Renfei Wu, Hanchu Li, Yang Cheng, Kun Zhou, Xiangliang Tuo, Wanming Zhang, Chang Xu, Xiaotian Li, Keshu Wu
  • Publication number: 20240396202
    Abstract: The disclosure relates to an antenna for a glass roof of a vehicle. The antenna can comprise a radiator for radiating electromagnetic waves. The radiator can be configured to be disposed between two glass layers of the glass roof. The radiator can be configured for feeding a signal to a receiver. The antenna can be substantially flat.
    Type: Application
    Filed: April 11, 2024
    Publication date: November 28, 2024
    Inventors: Hanieh ALIAKBARIABAR, Christian LÖTBÄCK, Xiaotian LI, Buon Kiong LAU
  • Publication number: 20240386793
    Abstract: The invention provides a roadside computing system (RCS), or an edge computing system, for an autonomous vehicle. The RCS comprises a hierarchy of roadside unit (RSU) and an onboard unit (OBU) in an individual vehicle. The RSU comprises a data processing module and a communication module, and is capable of generating guidance information and targeted instructions for individual vehicle. The data processing module of the RSU comprises two processors: an External Object Calculating Module (EOCM) and an AI processing unit. Thus, the RCS utilizes roadside edge computing power and AI models to support autonomous driving for the vehicle. The OBU comprises a data processing module, a communication module, and a vehicle control module, and is capable of generating vehicle-specific targeted instruction for the vehicle based on guidance information and targeted instructions received from RSUs, and controlling the vehicle based on vehicle-specific targeted instruction.
    Type: Application
    Filed: June 4, 2024
    Publication date: November 21, 2024
    Inventors: Bin Ran, Bocheng An, Zhi Zhou, Min Li, Keshu Wu, Yang Cheng, Yifan Yao, Haotian Shi, Tianyi Chen, Shen Li, Kunsong Shi, Zhen Zhang, Fan Ding, Huachun Tan, Yuankai Wu, Shuoxuan Dong, Linhui Ye, Xiaotian Li
  • Publication number: 20240351616
    Abstract: This invention presents a function allocation system for an autonomous vehicle (AV). During the operations of the AV, some or all of its automated driving capabilities or functions could be downgraded due to long-tail events or malfunctioning. The roadside intelligent infrastructure, or the cloud platform, could supplement some or all of AV's automated driving functions, including sensing, prediction and decision-making, and/or control functions. The function allocation system dynamically allocates these functions between AV and intelligent infrastructure, achieving a higher system intelligence level S than the downgraded vehicle intelligence level V. In addition, a function allocation system could dynamically allocate sensing, prediction and decision-making, and/or control functions between AV and a cloud platform. This invention also presents a function integration system or a fusion system for an AV.
    Type: Application
    Filed: July 2, 2024
    Publication date: October 24, 2024
    Inventors: Bin Ran, Junwei You, Keshu Wu, Weizhe Tang, Yang Cheng, Yifan Yao, Tianyi Chen, Shuoxuan Dong, Mingheng Zhang, Xiaotian Li, Shen Li, Kunsong Shi, Haotian Shi, Yanghui Mo, Hongjie Liu, Ran Yi
  • Publication number: 20240355203
    Abstract: This invention presents an automated driving system with distributed computing (ADS-DC). During the operation of a connected automated vehicle (CAV), some or all of its automated driving capabilities for sensing, prediction, planning, decision-making, or control may be downgraded due to long-tail events or malfunctions. The intelligent roadside toolbox (IRT) functions as an edge server or a cloud, and can supplement CAV's sensing functions, prediction and management functions, planning and decision-making functions, and vehicle control functions by providing customized, on-demand, and dynamic computing resources and functions to the CAV. In addition, the IRT computing functions provide the computation support for sensing, prediction, planning, decision-making, and/or control functions of said CAV. Namely, the IRT functions as an edge server or a cloud to provide processing, training or optimization of CAV driving models as well as facilitate the implementation of the driving models in the CAV.
    Type: Application
    Filed: July 3, 2024
    Publication date: October 24, 2024
    Inventors: Bin Ran, Sicheng Fu, Rui Gan, Yang Cheng, Shen Li, Kexin Tian, Tianyi Chen, Shuoxuan Dong, Kunsong Shi, Haotian Shi, Xiaotian Li
  • Publication number: 20240343269
    Abstract: This technology relates to autonomous vehicle (AV) control systems tailored for critical points of a partially instrumented infrastructure. The first system integrates an onboard unit (OBU) and communication modules to interact with roadside units (RSUs) or a cloud platform, delivering time-sensitive control instructions to vehicles at critical points. The OBUs execute these instructions for driving tasks. The second system combines an OBU with a cloud platform, leveraging cloud services for enhanced functionality like storage and computing. It adapts to diverse critical point scenarios, employing proactive incident prediction and rapid detection methods for optimized performance.
    Type: Application
    Filed: April 8, 2024
    Publication date: October 17, 2024
    Inventors: Bin Ran, Peipei Mao, Linheng Li, Yang Cheng, Tianyi Chen, Yang Zhou, Zhen Zhang, Xiaotian Li, Shen Li, Shuoxuan Dong, Kunsong Shi
  • Publication number: 20240331529
    Abstract: The invention provides a vehicle AI computing system (VACS) that supports autonomous driving through an Onboard Unit (OBU) for vehicle-based computing and distributed computing based on vehicle road-cloud. The vehicle-based computing can effectively complete various computational tasks by using onboard computing resources. The distributed computing allows the vehicle to work in collaboration with roadside units (RSUs) and/or the cloud to effectively complete various computational tasks. The VACS features an OBU with a sensing module, a communication module, and a data processing module that integrates data from vehicle sensors, RSUs, and the cloud. The OBU also includes a vehicle control module that helps control the vehicle based on the data of RSU and cloud. The VACS leverages high performance computation resources to implement end to end driving tasks including sensing, prediction, planning and decision making, and control.
    Type: Application
    Filed: June 13, 2024
    Publication date: October 3, 2024
    Inventors: Bin Ran, Zhiyu Wang, Renfei Wu, Junfeng Jiang, Yang Cheng, Keshu Wu, Yifan Yao, Tianyi Chen, Haotian Shi, Shen Li, Kunsong Shi, Zhen Zhang, Fan Ding, Huachun Tan, Yuankai Wu, Shuoxuan Dong, Linhui Ye, Xiaotian Li
  • Publication number: 20240321104
    Abstract: The invention provides an autonomous vehicle (AV) system with an artificial intelligence (AI) system for automated vehicle control and traffic operations. This AI system comprises a computation component configured to provide sensing, behavior prediction and management, decision making, and vehicle control for the vehicle. This AI system is configured to receive local knowledge, information, data, and models from a roadside unit (RSU) or a cloud to improve performance and efficiency of the vehicle. The AI system is configured to train models with heuristic parameters obtained from a local traffic control center/traffic control unit (TCC/TCU) or the cloud to provide an improved model. The AI system is configured to provide intelligence coordination to distribute intelligence among vehicles, RSUs and cloud. The system also provides localized self-evolving artificial intelligence.
    Type: Application
    Filed: May 23, 2024
    Publication date: September 26, 2024
    Inventors: Bin Ran, Junwei You, Keshu Wu, Yang Cheng, Weizhe Tang, Yuan Zheng, Shen Li, Shuoxuan Dong, Tianyi Chen, Xiaotian Li, Zhen Zhang, Yang Zhou
  • Patent number: 12046136
    Abstract: Provided herein is technology related to a distributed driving system (DDS) by using flexible, on-demand, and customized resources and functions from an intelligent roadside toolbox (IRT). These resources comprise computational resources, cloud resources, system security resources, backup and redundancy resources. The functions comprise sensing, transportation behavior prediction and management, planning and decision-making, and vehicle control functions. The DDS and IRT technologies described herein are vehicle oriented, modular, and customizable for each vehicle to meet the specific needs of each individual vehicle as an on-demand and dynamic service. The DDS is configured to provide customized, on-demand, and dynamic IRT resources and functions to individual CAVs to supplement the CAV's sensing, transportation behavior prediction and management, planning and decision-making, and/or vehicle control.
    Type: Grant
    Filed: July 13, 2023
    Date of Patent: July 23, 2024
    Assignee: CAVH LLC
    Inventors: Bin Ran, Yang Cheng, Shen Li, Kexin Tian, Tianyi Chen, Shuoxuan Dong, Kunsong Shi, Haotian Shi, Xiaotian Li
  • Patent number: 12037023
    Abstract: The technology described herein provides Automated Driving System (ADS) methods and systems for coordinating and/or fusing intelligence and functions between Connected Automated Vehicles (CAV) and ADS infrastructure to provide target levels of automated driving. The technology provides systems and methods for function allocation comprising sensing allocation, prediction and decision-making allocation, and control allocation. The ADS operates across various intelligence levels, identified during vehicle operation. The function allocation system dynamically allocates essential functions based on the intelligence levels of both vehicles and infrastructures, ensuring that ADS achieves a system intelligence that surpasses that of individual components. This methodical function distribution enables ADS to manage both vehicles and infrastructures in a manner that enhances vehicular operations and control.
    Type: Grant
    Filed: May 24, 2021
    Date of Patent: July 16, 2024
    Assignee: CAVH LLC
    Inventors: Bin Ran, Tianyi Chen, Shuoxuan Dong, Yang Cheng, Mingheng Zhang, Xiaotian Li, Shen Li, Kunsong Shi, Haotian Shi, Yifan Yao, Yanghui Mo, Hongjie Liu, Keshu Wu, Ran Yi
  • Patent number: 12020563
    Abstract: The invention provides systems and methods for an autonomous vehicle and cloud control system comprising an autonomous vehicle (AV) control system and a cloud-based platform, which are two components of an Intelligent Road Infrastructure System (IRIS). This integrated vehicle-cloud system provides sensing, prediction, decision-making, and control instructions for specific vehicles at a microscopic level. Specifically, through the system, AVs can be effectively and efficiently controlled by AV itself and/or by the cloud. The AV and cloud control system provides individual vehicles with detailed time-sensitive control instructions for vehicles to fulfill driving tasks. In addition, the cloud-based platform is configured to predict behavior of individual vehicles and provide planning and decision making at a microscopic level from 1 to 10 milliseconds, which is critical for AV operations.
    Type: Grant
    Filed: June 14, 2022
    Date of Patent: June 25, 2024
    Assignee: CAVH LLC
    Inventors: Bin Ran, Yang Cheng, Tianyi Chen, YIfan Yao, Keshu Wu, Haotian Shi, Shen Li, Kunsong Shi, Zhen Zhang, Fan Ding, Huachun Tan, Yuankai Wu, Shuoxuan Dong, Linhui Ye, Xiaotian Li
  • Patent number: 12008893
    Abstract: The invention provides systems and methods for an autonomous vehicle (AV) control system comprising an onboard unit (OBU) and a roadside unit (RSU), which are two components of an Intelligent Road Infrastructure System (IRIS). This integrated vehicle-road system provides sensing, prediction, decision-making, and control instructions for specific vehicles at a microscopic level. Specifically, through the AV control system, an AV can be effectively and efficiently controlled by the AV itself and/or by the RSU. The AV control system provides individual vehicles with detailed time-sensitive control instructions for vehicles to fulfill driving tasks. In addition, the RSU conducts behavior prediction for individual vehicles at a microscopic level from 1 to 10 milliseconds, which is critical for connected and automated vehicle (CAV) operations.
    Type: Grant
    Filed: June 14, 2022
    Date of Patent: June 11, 2024
    Assignee: CAVH LLC
    Inventors: Bin Ran, Yang Cheng, Tianyi Chen, Yifan Yao, Keshu Wu, Haotian Shi, Shen Li, Kunsong Shi, Zhen Zhang, Fan Ding, Huachun Tan, Yuankai Wu, Shuoxuan Dong, Linhui Ye, Xiaotian Li
  • Patent number: 12002361
    Abstract: Provided herein is technology relating to connected and automated highway systems and particularly, but not exclusively, to systems and methods for providing localized self-evolving artificial intelligence for intelligent road infrastructure systems.
    Type: Grant
    Filed: July 1, 2020
    Date of Patent: June 4, 2024
    Assignee: CAVH LLC
    Inventors: Yang Cheng, Bin Ran, Shen Li, Shuoxuan Dong, Tianyi Chen, Yuan Zheng, Xiaotian Li, Zhen Zhang, Yang Zhou