Patents by Inventor Xiaoxin FU

Xiaoxin FU has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11767029
    Abstract: Embodiments of the present disclosure provide a bend driving control method for an autonomous vehicle, a device and a storage medium, and relate to a field of perception and autonomous driving technologies. The method includes: obtaining an occupancy width of an autonomous vehicle on a target bend when the autonomous vehicle drives on the target bend; detecting location information of an obstacle on the target bend; and controlling a driving route of the autonomous vehicle on the target bend based on the occupancy width and the location information of the obstacle.
    Type: Grant
    Filed: September 25, 2020
    Date of Patent: September 26, 2023
    Assignee: Beijing Baidu Netcom Science and Technology Co., Ltd.
    Inventors: Zhiyuan Chen, Xiaoxin Fu, Lin Ma, Xujian Li, Zhenguang Zhu
  • Patent number: 11687080
    Abstract: A blacklist-based re-navigation method and apparatus, and a computer readable storage medium are provided. The blacklist-based re-navigation method includes: detecting whether an obstacle is in a front area of a driverless vehicle in a driving process of the driverless vehicle; if an obstacle is detected in the front area, generating a blacklist associated with the obstacle, wherein the blacklist includes a road on which the obstacle is located; and reporting the blacklist to a navigation system, wherein the navigation system re-plans a navigation route according to the road on which the obstacle is located.
    Type: Grant
    Filed: February 10, 2020
    Date of Patent: June 27, 2023
    Assignee: APOLLO INTELLIGENT DRIVING TECHNOLOGY (BEIJING) CO., LTD.
    Inventors: Hongye Li, Xiaoxin Fu, Zhenguang Zhu
  • Patent number: 11415993
    Abstract: A method and apparatus for processing a driving reference line, and a vehicle are provided. The method comprises: acquiring position information of at least one obstacle in a range covered by an original driving reference line; determining a safety range parameter based on the position information of the at least one obstacle; adjusting a coefficient of a polynomial curve corresponding to the original driving reference line based on the safety range parameter, to obtain an adjusted polynomial curve; and determining an adjusted driving reference line based on the updated polynomial curve. The safety problem of the driving reference line caused by the insufficient obstacle avoidance ability of the driving reference line is solved.
    Type: Grant
    Filed: February 13, 2020
    Date of Patent: August 16, 2022
    Assignee: APOLLO INTELLIGENT DRIVING TECHNOLOGY (BEIJING) CO., LTD.
    Inventors: Xiaoxin Fu, Dayang Hao, Zhenguang Zhu, Zhiyuan Chen, Yuchang Pan, Fan Zhu
  • Patent number: 11415994
    Abstract: A method and apparatus for planning a travelling path, and a vehicle are provided. The method includes: determining at least one reference curve covering a first length range, and selecting a target reference curve covering the first length range from the at least one reference curve covering the first length range; extracting a curve to be adjusted covering a second length range from the target reference curve covering the first length range; processing the curve to be adjusted based on a safety parameter within the second length range, to obtain an adjusted curve; and determining a travelling path covering the first length range based on the adjusted curve and the target reference curve. The complexity of an actual traffic scene is taken into account, and a travelling path planning is not affected by the accuracy of sampling points.
    Type: Grant
    Filed: February 17, 2020
    Date of Patent: August 16, 2022
    Assignee: APOLLO INTELLIGENT DRIVING TECHNOLOGY (BEIJING) CO., LTD.
    Inventors: Xiaoxin Fu, Dayang Hao, Zhenguang Zhu, Zhiyuan Chen, Fan Zhu
  • Patent number: 11260880
    Abstract: In one embodiment, instead of using map data, a relative coordinate system is utilized to assist perception of the driving environment surrounding an ADV for some driving situations. One of such driving situations is driving on a highway. Typically, a highway has fewer intersections and exits. The relative coordinate system is utilized based on the relative lane configuration and relative obstacle information to control the ADV to simply follow the lane and avoid potential collision with any obstacles discovered within the road, without having to use map data. Once the relative lane configuration and obstacle information have been determined, regular path and speed planning and optimization can be performed to generate a trajectory to drive the ADV. Such a perception system is referred to as a relative perception system based on a relative coordinate system.
    Type: Grant
    Filed: April 18, 2018
    Date of Patent: March 1, 2022
    Assignees: BAIDU USA LLC, BAIDU.COM TIMES TECHNOLOGY (BEIJING) CO., LTD.
    Inventors: Fan Zhu, Qi Kong, Yuchang Pan, Feiyi Jiang, Xin Xu, Xiaoxin Fu, Zhongpu Xia, Chunming Zhao, Liangliang Zhang, Weicheng Zhu, Li Zhuang, Haoyang Fan, Hui Jiang, Jiaming Tao
  • Publication number: 20210253127
    Abstract: Embodiments of the present disclosure provide a bend driving control method for an autonomous vehicle, a device and a storage medium, and relate to a field of perception and autonomous driving technologies. The method includes: obtaining an occupancy width of an autonomous vehicle on a target bend when the autonomous vehicle drives on the target bend; detecting location information of an obstacle on the target bend; and controlling a driving route of the autonomous vehicle on the target bend based on the occupancy width and the location information of the obstacle.
    Type: Application
    Filed: September 25, 2020
    Publication date: August 19, 2021
    Inventors: Zhiyuan CHEN, Xiaoxin FU, Lin MA, Xujian LI, Zhenguang ZHU
  • Publication number: 20210245786
    Abstract: A method for planning a path for lane changing includes: determining, based on position information of a detected obstacle, a reference position to be passed by a vehicle when the vehicle detours the obstacle; estimating an end position of the vehicle detouring the obstacle based on a positional relationship between the vehicle and the obstacle; and determining a path of the vehicle to detour the obstacle based on a current position of the vehicle, the reference position and the end position.
    Type: Application
    Filed: September 24, 2020
    Publication date: August 12, 2021
    Inventors: Lin MA, Xiaoxin FU, Zhenguang ZHU, Zhiyuan CHEN, Xujian LI
  • Publication number: 20210163037
    Abstract: In one embodiment, instead of using map data, a relative coordinate system is utilized to assist perception of the driving environment surrounding an ADV for some driving situations. One of such driving situations is driving on a highway. Typically, a highway has fewer intersections and exits. The relative coordinate system is utilized based on the relative lane configuration and relative obstacle information to control the ADV to simply follow the lane and avoid potential collision with any obstacles discovered within the road, without having to use map data. Once the relative lane configuration and obstacle information have been determined, regular path and speed planning and optimization can be performed to generate a trajectory to drive the ADV. Such a perception system is referred to as a relative perception system based on a relative coordinate system.
    Type: Application
    Filed: April 18, 2018
    Publication date: June 3, 2021
    Inventors: Fan ZHU, Qi KONG, Yuchang PAN, Feiyi JIANG, Xin XU, Xiaoxin FU, Zhongpu XIA, Chunming ZHAO, Liangliang ZHANG, Weicheng ZHU, Li ZHUANG, Haoyang FAN, Hui JIANG, Jiaming TAO
  • Publication number: 20200272156
    Abstract: A method and apparatus for processing a driving reference line, and a vehicle are provided. The method comprises: acquiring position information of at least one obstacle in a range covered by an original driving reference line; determining a safety range parameter based on the position information of the at least one obstacle; adjusting a coefficient of a polynomial curve corresponding to the original driving reference line based on the safety range parameter, to obtain an adjusted polynomial curve; and determining an adjusted driving reference line based on the updated polynomial curve. The safety problem of the driving reference line caused by the insufficient obstacle avoidance ability of the driving reference line is solved.
    Type: Application
    Filed: February 13, 2020
    Publication date: August 27, 2020
    Inventors: Xiaoxin Fu, Dayang Hao, Zhenguang Zhu, Zhiyuan Chen, Yuchang Pan, Fan Zhu
  • Publication number: 20200272157
    Abstract: A method and apparatus for planning a travelling path, and a vehicle are provided. The method includes: determining at least one reference curve covering a first length range, and selecting a target reference curve covering the first length range from the at least one reference curve covering the first length range; extracting a curve to be adjusted covering a second length range from the target reference curve covering the first length range; processing the curve to be adjusted based on a safety parameter within the second length range, to obtain an adjusted curve; and determining a travelling path covering the first length range based on the adjusted curve and the target reference curve. The complexity of an actual traffic scene is taken into account, and a travelling path planning is not affected by the accuracy of sampling points.
    Type: Application
    Filed: February 17, 2020
    Publication date: August 27, 2020
    Inventors: Xiaoxin Fu, Dayang Hao, Zhenguang Zhu, Zhiyuan Chen, Fan Zhu
  • Publication number: 20200264618
    Abstract: A blacklist-based re-navigation method and apparatus, and a computer readable storage medium are provided. The blacklist-based re-navigation method includes: detecting whether an obstacle is in a front area of a driverless vehicle in a driving process of the driverless vehicle; if an obstacle is detected in the front area, generating a blacklist associated with the obstacle, wherein the blacklist includes a road on which the obstacle is located; and reporting the blacklist to a navigation system, wherein the navigation system re-plans a navigation route according to the road on which the obstacle is located.
    Type: Application
    Filed: February 10, 2020
    Publication date: August 20, 2020
    Inventors: Hongye Li, Xiaoxin Fu, Zhenguang Zhu
  • Publication number: 20200262436
    Abstract: A method, device and terminal apparatus for invoking an automatic driving reference line are provided. The method includes: acquiring lane information of a current lane where a vehicle is located; calculating an automatic driving reference line of the current lane according to the lane information of the current lane; invoking lane information of a switching lane according to a topological relation between the current lane and the switching lane; and calculating an automatic driving reference line of the switching lane according to the automatic driving reference line of the current lane and the lane information of the switching lane.
    Type: Application
    Filed: February 12, 2020
    Publication date: August 20, 2020
    Inventors: Zhenguang Zhu, Hongye Li, Xiaoxin Fu, Zhiyuan Chen
  • Patent number: 10549752
    Abstract: A lane departure detection system detects that an autonomous driving vehicle (ADV) is departing from the lane in which the ADV is driving based on sensor data captured when the ADV contact a deceleration curb such as a speed bump laid across the lane. When the ADV contacts the deceleration curb, the lane departure detection system detects and calculates an angle of a moving direction of the ADV vs a longitudinal direction of the deceleration curb. Based on the angle, the system calculates how much the moving direction of the ADV is off compared to a lane direction of the lane. The lane direction is typically substantially perpendicular to the longitudinal direction of the deceleration curb. A control command such as a speed control command and/or a steering control command is generated based on the angle to correct the moving direction of the ADV.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: February 4, 2020
    Assignees: BAIDU USA LLC, BAIDU.COM TIMES TECHNOLOGY (BEIJING) CO., LTD.
    Inventors: Fan Zhu, Qi Kong, Qi Luo, Xiang Yu, Sen Hu, Zhenguang Zhu, Xiaoxin Fu, Jiarui He, Hongye Li, Yuchang Pan, Zhongpu Xia, Chunming Zhao, Guang Yang, Jingao Wang
  • Patent number: 10488205
    Abstract: In one embodiment, when an ADV is driving on a road segment, a driving parameter is recorded in response to a first control command. A difference between the first driving parameter and a target driving parameter corresponding to the first control command is determined. In response to determining that the difference exceeds a predetermined threshold, a second control command is issued to compensate the difference and cause the ADV to drive with a second driving parameter closer to the target driving parameter. A slope status of the road segment is derived based on at least the second control command. Map data of a map corresponding to the road segment of the road is updated based on the derived slope status. The updated map can be utilized to generate and issue proper control commands in view of the slope status of the road when the ADV drives on the same road subsequently.
    Type: Grant
    Filed: May 22, 2017
    Date of Patent: November 26, 2019
    Assignees: BAIDU USA LLC, BAIDU.COM TIMES TECHNOLOGY (BEIJING) CO., LTD.
    Inventors: Sen Hu, Fan Zhu, Qi Kong, Qi Luo, Xiang Yu, Zhenguang Zhu, Xiaoxin Fu, Jiarui He, Hongye Li, Yuchang Pan, Zhongpu Xia, Chunming Zhao, Guang Yang, Jingao Wang
  • Patent number: 10365649
    Abstract: In one embodiment, a lane departure detection system detects at a first point in time that a wheel of an ADV rolls onto a lane curb disposed on an edge of a lane in which the ADV is moving. The system detects at a second point in time that the wheel of the ADV rolls off the lane curb of the lane. The system calculates an angle between a moving direction of the ADV and a lane direction of the lane based on the time difference between the first point in time and the second point in time in view of a current speed of the ADV. The system then generates a control command based on the angle to adjust the moving direction of the ADV in order to prevent the ADV from further drifting off the lane direction of the lane.
    Type: Grant
    Filed: April 19, 2017
    Date of Patent: July 30, 2019
    Assignees: BAIDU USA LLC, BAIDU.COM TIMES TECHNOLOGY (BEIJING) CO., LTD.
    Inventors: Fan Zhu, Qi Kong, Qi Luo, Xiang Yu, Sen Hu, Zhenguang Zhu, Xiaoxin Fu, Jiarui He, Hongye Li, Yuchang Pan, Zhongpu Xia, Chunming Zhao, Guang Yang, Jingao Wang
  • Publication number: 20190003839
    Abstract: In one embodiment, when an ADV is driving on a road segment, a driving parameter is recorded in response to a first control command. A difference between the first driving parameter and a target driving parameter corresponding to the first control command is determined. In response to determining that the difference exceeds a predetermined threshold, a second control command is issued to compensate the difference and cause the ADV to drive with a second driving parameter closer to the target driving parameter. A slope status of the road segment is derived based on at least the second control command. Map data of a map corresponding to the road segment of the road is updated based on the derived slope status. The updated map can be utilized to generate and issue proper control commands in view of the slope status of the road when the ADV drives on the same road subsequently.
    Type: Application
    Filed: May 22, 2017
    Publication date: January 3, 2019
    Inventors: Sen HU, Fan ZHU, Qi KONG, Qi LUO, Xiang YU, Zhenguang ZHU, Xiaoxin FU, Jiarui HE, Hongye LI, Yuchang PAN, Zhongpu XIA, Chunming ZHAO, Guang YANG, Jingao WANG
  • Publication number: 20180334166
    Abstract: A lane departure detection system detects that an autonomous driving vehicle (ADV) is departing from the lane in which the ADV is driving based on sensor data captured when the ADV contact a deceleration curb such as a speed bump laid across the lane. When the ADV contacts the deceleration curb, the lane departure detection system detects and calculates an angle of a moving direction of the ADV vs a longitudinal direction of the deceleration curb. Based on the angle, the system calculates how much the moving direction of the ADV is off compared to a lane direction of the lane. The lane direction is typically substantially perpendicular to the longitudinal direction of the deceleration curb. A control command such as a speed control command and/or a steering control command is generated based on the angle to correct the moving direction of the ADV.
    Type: Application
    Filed: March 30, 2017
    Publication date: November 22, 2018
    Inventors: Fan ZHU, Qi KONG, Qi LUO, Xiang YU, Sen HU, Zhenguang ZHU, Xiaoxin FU, Jiarui HE, Hongye LI, Yuchang PAN, Zhongpu XIA, Chunming ZHAO, Guang YANG, Jingao WANG
  • Publication number: 20180307234
    Abstract: In one embodiment, a lane departure detection system detects at a first point in time that a wheel of an ADV rolls onto a lane curb disposed on an edge of a lane in which the ADV is moving. The system detects at a second point in time that the wheel of the ADV rolls off the lane curb of the lane. The system calculates an angle between a moving direction of the ADV and a lane direction of the lane based on the time difference between the first point in time and the second point in time in view of a current speed of the ADV. The system then generates a control command based on the angle to adjust the moving direction of the ADV in order to prevent the ADV from further drifting off the lane direction of the lane.
    Type: Application
    Filed: April 19, 2017
    Publication date: October 25, 2018
    Inventors: Fan ZHU, Qi KONG, Qi LUO, Xiang YU, Sen HU, Zhenguang ZHU, Xiaoxin FU, Jiarui HE, Hongye LI, Yuchang PAN, Zhongpu XIA, Chunming ZHAO, Guang YANG, Jingao WANG